2.24 problem 49

Internal problem ID [2804]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 49.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

Solve \begin {gather*} \boxed {y^{\prime }-\cos \left (2 x \right )-\left (\sin \left (2 x \right )+y\right ) y=0} \end {gather*}

Solution by Maple

Time used: 0.0 (sec). Leaf size: 198

dsolve(diff(y(x),x) = cos(2*x)+(sin(2*x)+y(x))*y(x),y(x), singsol=all)
 

\[ y \relax (x ) = \left (\frac {2 \HeunCPrime \left (1, \frac {1}{2}, -\frac {1}{2}, -1, \frac {7}{8}, \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right ) c_{1} \cos \left (2 x \right )}{\sqrt {2 \cos \left (2 x \right )+2}\, \left (c_{1} \HeunC \left (1, \frac {1}{2}, -\frac {1}{2}, -1, \frac {7}{8}, \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right ) \sqrt {2 \cos \left (2 x \right )+2}+\HeunC \left (1, -\frac {1}{2}, -\frac {1}{2}, -1, \frac {7}{8}, \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right )\right )}+\frac {\HeunCPrime \left (1, -\frac {1}{2}, -\frac {1}{2}, -1, \frac {7}{8}, \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right ) \sqrt {2 \cos \left (2 x \right )+2}+2 \HeunCPrime \left (1, \frac {1}{2}, -\frac {1}{2}, -1, \frac {7}{8}, \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right ) c_{1}+2 \HeunC \left (1, \frac {1}{2}, -\frac {1}{2}, -1, \frac {7}{8}, \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right ) c_{1}}{\sqrt {2 \cos \left (2 x \right )+2}\, \left (c_{1} \HeunC \left (1, \frac {1}{2}, -\frac {1}{2}, -1, \frac {7}{8}, \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right ) \sqrt {2 \cos \left (2 x \right )+2}+\HeunC \left (1, -\frac {1}{2}, -\frac {1}{2}, -1, \frac {7}{8}, \frac {\cos \left (2 x \right )}{2}+\frac {1}{2}\right )\right )}\right ) \sin \left (2 x \right ) \]

Solution by Mathematica

Time used: 1.681 (sec). Leaf size: 73

DSolve[y'[x]==Cos[2 x]+(Sin[2 x]+y[x])y[x],y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \tan (x)+\frac {e^{-\cos ^2(x)} \tan (x) \sec (x)}{\sqrt {-\sin ^2(x)} \left (\int _1^{\cos (x)}\frac {e^{-K[1]^2}}{K[1]^2 \sqrt {K[1]^2-1}}dK[1]+c_1\right )} \\ y(x)\to \tan (x) \\ \end{align*}