34.12 problem 1014

Internal problem ID [3731]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1014.
ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

Solve \begin {gather*} \boxed {9 \left (1-x^{2}\right ) y^{4} \left (y^{\prime }\right )^{2}+6 x y^{5} y^{\prime }+4 x^{2}=0} \end {gather*}

Solution by Maple

Time used: 0.312 (sec). Leaf size: 245

dsolve(9*(-x^2+1)*y(x)^4*diff(y(x),x)^2+6*x*y(x)^5*diff(y(x),x)+4*x^2 = 0,y(x), singsol=all)
 

\begin{align*} y \relax (x ) = \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = -\left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \frac {\left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{2 c_{1}} \\ y \relax (x ) = -\frac {\left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{4 c_{1}}-\frac {i \sqrt {3}\, \left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{4 c_{1}} \\ y \relax (x ) = -\frac {\left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{4 c_{1}}+\frac {i \sqrt {3}\, \left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{4 c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.415 (sec). Leaf size: 199

DSolve[9(1-x^2) y[x]^4 (y'[x])^2 +6 x y[x]^5 y'[x]+4 x^2==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to -\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{-4 x^2+4+c_1{}^2}}{\sqrt [3]{c_1}} \\ y(x)\to -1 \\ y(x)\to 0 \\ y(x)\to \sqrt [3]{-\frac {1}{2}} \\ y(x)\to \text {Indeterminate} \\ y(x)\to -\sqrt [3]{-2} \sqrt [6]{1-x^2} \\ y(x)\to \sqrt [3]{-2} \sqrt [6]{1-x^2} \\ y(x)\to -\sqrt [3]{2} \sqrt [6]{1-x^2} \\ y(x)\to \sqrt [3]{2} \sqrt [6]{1-x^2} \\ y(x)\to -(-1)^{2/3} \sqrt [3]{2} \sqrt [6]{1-x^2} \\ y(x)\to (-1)^{2/3} \sqrt [3]{2} \sqrt [6]{1-x^2} \\ \end{align*}