5.2 problem 2

Internal problem ID [9707]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.4-1. Equations with hyperbolic sine and cosine
Problem number: 2.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

Solve \begin {gather*} \boxed {y^{\prime }-y^{2}-a \sinh \left (\beta x \right ) y-a b \sinh \left (\beta x \right )+b^{2}=0} \end {gather*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 48

dsolve(diff(y(x),x)=y(x)^2+a*sinh(beta*x)*y(x)+a*b*sinh(beta*x)-b^2,y(x), singsol=all)
 

\[ y \relax (x ) = -b -\frac {{\mathrm e}^{\frac {a \cosh \left (\beta x \right )}{\beta }-2 b x}}{\int {\mathrm e}^{\frac {a \cosh \left (\beta x \right )}{\beta }-2 b x}d x -c_{1}} \]

Solution by Mathematica

Time used: 4.446 (sec). Leaf size: 183

DSolve[y'[x]==y[x]^2+a*Sinh[\[Beta]*x]*y[x]+a*b*Sinh[\[Beta]*x]-b^2,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^x-\frac {e^{\frac {a \cosh (\beta K[1])}{\beta }-2 b K[1]} (-b+a \sinh (\beta K[1])+y(x))}{a \beta (b+y(x))}dK[1]+\int _1^{y(x)}\left (\frac {e^{\frac {a \cosh (x \beta )}{\beta }-2 b x}}{a \beta (b+K[2])^2}-\int _1^x\left (\frac {e^{\frac {a \cosh (\beta K[1])}{\beta }-2 b K[1]} (-b+K[2]+a \sinh (\beta K[1]))}{a \beta (b+K[2])^2}-\frac {e^{\frac {a \cosh (\beta K[1])}{\beta }-2 b K[1]}}{a \beta (b+K[2])}\right )dK[1]\right )dK[2]=c_1,y(x)\right ] \]