2.21 problem 21

Internal problem ID [9608]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 21.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

Solve \begin {gather*} \boxed {x^{n +1} y^{\prime }-y^{2} x^{2 n} a -c \,x^{m}-d=0} \end {gather*}

Solution by Maple

Time used: 0.0 (sec). Leaf size: 270

dsolve(x^(n+1)*diff(y(x),x)=a*x^(2*n)*y(x)^2+c*x^m+d,y(x), singsol=all)
 

\[ y \relax (x ) = \frac {\left (\left (-\sqrt {-4 d a +n^{2}}\, c_{1}-c_{1} n \right ) \BesselY \left (\frac {\sqrt {-4 d a +n^{2}}}{m}, \frac {2 \sqrt {c a}\, x^{\frac {m}{2}}}{m}\right )+2 x^{\frac {m}{2}} \BesselY \left (\frac {\sqrt {-4 d a +n^{2}}+m}{m}, \frac {2 \sqrt {c a}\, x^{\frac {m}{2}}}{m}\right ) \sqrt {c a}\, c_{1}+\left (-\sqrt {-4 d a +n^{2}}-n \right ) \BesselJ \left (\frac {\sqrt {-4 d a +n^{2}}}{m}, \frac {2 \sqrt {c a}\, x^{\frac {m}{2}}}{m}\right )+2 \BesselJ \left (\frac {\sqrt {-4 d a +n^{2}}+m}{m}, \frac {2 \sqrt {c a}\, x^{\frac {m}{2}}}{m}\right ) \sqrt {c a}\, x^{\frac {m}{2}}\right ) x^{1-n}}{2 x a \left (\BesselY \left (\frac {\sqrt {-4 d a +n^{2}}}{m}, \frac {2 \sqrt {c a}\, x^{\frac {m}{2}}}{m}\right ) c_{1}+\BesselJ \left (\frac {\sqrt {-4 d a +n^{2}}}{m}, \frac {2 \sqrt {c a}\, x^{\frac {m}{2}}}{m}\right )\right )} \]

Solution by Mathematica

Time used: 1.036 (sec). Leaf size: 948

DSolve[x^(n+1)*y'[x]==a*x^(2*n)*y[x]^2+c*x^m+d,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {x^{-n} \left (\frac {\sqrt {a} \sqrt {c} \sqrt {x^m}}{m}\right )^{-\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}} \left (a^{\frac {\sqrt {n^2-4 a d}}{m}} c^{\frac {\sqrt {n^2-4 a d}}{m}} m^{\frac {2 \sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}} \left (\frac {\sqrt {a} \sqrt {c} \sqrt {x^m}}{m}\right )^{\frac {2 \sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}} \Gamma \left (\frac {\sqrt {n^2-4 a d}}{m}\right ) \left (2 a c \sqrt {n^2-4 a d} \, _0\tilde {F}_1\left (;\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}+2;-\frac {a c x^m}{m^2}\right ) x^m+m \left (4 a d-n \left (n+\sqrt {n^2-4 a d}\right )\right ) \, _0\tilde {F}_1\left (;\frac {m^2+\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2};-\frac {a c x^m}{m^2}\right )\right ) \left (x^m\right )^{\frac {\sqrt {n^2-4 a d}}{m}}+a^{\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}} c^{\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}} m^{\frac {2 \sqrt {n^2-4 a d}}{m}} c_1 \Gamma \left (-\frac {\sqrt {n^2-4 a d}}{m}\right ) \left (m \left (4 a d+n \left (\sqrt {n^2-4 a d}-n\right )\right ) \, _0\tilde {F}_1\left (;1-\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2};-\frac {a c x^m}{m^2}\right )-2 a c \sqrt {n^2-4 a d} x^m \, _0\tilde {F}_1\left (;2-\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2};-\frac {a c x^m}{m^2}\right )\right ) \left (x^m\right )^{\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}}\right )}{2 a m^2 \left (a^{\frac {\sqrt {n^2-4 a d}}{m}} c^{\frac {\sqrt {n^2-4 a d}}{m}} m^{\frac {2 \sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}} J_{\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}}\left (\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^m}}{m}\right ) \Gamma \left (\frac {m+\sqrt {n^2-4 a d}}{m}\right ) \left (x^m\right )^{\frac {\sqrt {n^2-4 a d}}{m}}+a^{\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}} c^{\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}} m^{\frac {2 \sqrt {n^2-4 a d}}{m}} J_{-\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}}\left (\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^m}}{m}\right ) c_1 \Gamma \left (1-\frac {\sqrt {n^2-4 a d}}{m}\right ) \left (x^m\right )^{\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2}}\right )} \\ y(x)\to \frac {x^{-n} \left (\frac {2 a c x^m \, _0\tilde {F}_1\left (;2-\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2};-\frac {a c x^m}{m^2}\right )}{m \, _0\tilde {F}_1\left (;1-\frac {\sqrt {m^2 \left (n^2-4 a d\right )}}{m^2};-\frac {a c x^m}{m^2}\right )}+\sqrt {n^2-4 a d}-n\right )}{2 a} \\ \end{align*}