2.15 Problems 1401 to 1500

Table 2.15: Main lookup table

#

ODE

Mathematica result

Maple result

1401

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y = 0 \]

1402

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

1403

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 x y = 0 \]

1404

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (-x^{2}+4\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

1405

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

1406

\[ {}9 x^{2} \left (x +3\right ) y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (3+4 x \right ) y = 0 \]

1407

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

1408

\[ {}16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y = 0 \]

1409

\[ {}x^{2} \left (4+3 x \right ) y^{\prime \prime }-x \left (4-3 x \right ) y^{\prime }+4 y = 0 \]

1410

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y = 0 \]

1411

\[ {}x^{2} \left (1-x \right )^{2} y^{\prime \prime }-x \left (-3 x^{2}+2 x +1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

1412

\[ {}9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y = 0 \]

1413

\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y = 0 \]

1414

\[ {}x^{2} \left (-2 x +1\right ) y^{\prime \prime }+x \left (8-9 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

1415

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y = 0 \]

1416

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y = 0 \]

1417

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (3+4 x \right ) y = 0 \]

1418

\[ {}x y^{\prime \prime }+y = 0 \]

1419

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }+4 x \left (1+2 x \right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

1420

\[ {}x \left (1+x \right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

1421

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y = 0 \]

1422

\[ {}x^{2} y^{\prime \prime }+x \left (2+x \right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

1423

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (9-x \right ) y = 0 \]

1424

\[ {}x^{2} y^{\prime \prime }+10 x y^{\prime }+\left (14+x \right ) y = 0 \]

1425

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }+4 x \left (3+8 x \right ) y^{\prime }-\left (5-49 x \right ) y = 0 \]

1426

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 x y = 0 \]

1427

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-3 \left (x +3\right ) y = 0 \]

1428

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x +1\right ) y^{\prime }-\left (4+x \right ) y = 0 \]

1429

\[ {}x \left (1+x \right ) y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

1430

\[ {}x^{2} \left (1+2 x \right ) y^{\prime \prime }+x \left (9+13 x \right ) y^{\prime }+\left (7+5 x \right ) y = 0 \]

1431

\[ {}4 x^{2} \left (1+2 x \right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y = 0 \]

1432

\[ {}3 x^{2} \left (x +3\right ) y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y = 0 \]

1433

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y = 0 \]

1434

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y = 0 \]

1435

\[ {}x^{2} \left (1+2 x \right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

1436

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

1437

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }+4 x \left (4 x +1\right ) y^{\prime }-\left (49+27 x \right ) y = 0 \]

1438

\[ {}x^{2} \left (1+2 x \right ) y^{\prime \prime }-x \left (9+8 x \right ) y^{\prime }-12 x y = 0 \]

1439

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

1440

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

1441

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

1442

\[ {}x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

1443

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (-x^{2}+3\right ) y = 0 \]

1444

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (x^{2}+8\right ) y^{\prime }+\left (3 x^{2}+5\right ) y = 0 \]

1445

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

1446

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

1447

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-\left (-x^{2}+35\right ) y = 0 \]

1448

\[ {}9 x^{2} y^{\prime \prime }-3 x \left (2 x^{2}+11\right ) y^{\prime }+\left (10 x^{2}+13\right ) y = 0 \]

1449

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (-x^{2}+1\right ) y = 0 \]

1450

\[ {}x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

1451

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

1452

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x y^{\prime }-\left (-x^{2}+35\right ) y = 0 \]

1453

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

1454

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

1455

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }-x \left (x^{2}+3\right ) y^{\prime }-2 x y = 0 \]

1456

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

1457

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

1458

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0 \]

1459

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

1460

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

1461

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

1462

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

1463

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

1464

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+7 y^{\prime }-5 y = 0 \]

1465

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

1466

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }-9 y = 0 \]

1467

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+16 y^{\prime }-16 y = 0 \]

1468

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

1469

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+9 y^{\prime }+5 y = 0 \]

1470

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

1471

\[ {}27 y^{\prime \prime \prime }+27 y^{\prime \prime }+9 y^{\prime }+y = 0 \]

1472

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

1473

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

1474

\[ {}y^{\prime \prime \prime \prime }+12 y^{\prime \prime }+36 y = 0 \]

1475

\[ {}16 y^{\prime \prime \prime \prime }-72 y^{\prime \prime }+81 y = 0 \]

1476

\[ {}6 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+7 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

1477

\[ {}4 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+3 y^{\prime \prime }-13 y^{\prime }-6 y = 0 \]

1478

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = 0 \]

1479

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

1480

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = 0 \]

1481

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

1482

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 0 \]

1483

\[ {}3 y^{\prime \prime \prime }-y^{\prime \prime }-7 y^{\prime }+5 y = 0 \]

1484

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

1485

\[ {}2 y^{\prime \prime \prime }-11 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

1486

\[ {}8 y^{\prime \prime \prime }-4 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

1487

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

1488

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y = 0 \]

1489

\[ {}4 y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+9 y = 0 \]

1490

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-8 y^{\prime }-8 y = 0 \]

1491

\[ {}4 y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+19 y^{\prime \prime }+32 y^{\prime }+12 y = 0 \]

1492

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

1493

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

1494

\[ {}y^{\prime \prime \prime \prime }+64 y = 0 \]

1495

\[ {}y^{\relax (6)}-y = 0 \]

1496

\[ {}y^{\prime \prime \prime \prime }+64 y = 0 \]

1497

\[ {}y^{\relax (5)}+y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

1498

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = -{\mathrm e}^{x} \left (-24 x^{2}+76 x +4\right ) \]

1499

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{-3 x} \left (6 x^{2}-23 x +32\right ) \]

1500

\[ {}4 y^{\prime \prime \prime }+8 y^{\prime \prime }-y^{\prime }-2 y = -{\mathrm e}^{x} \left (6 x^{2}+45 x +4\right ) \]