2.41 Problems 4001 to 4100

Table 2.41: Main lookup table

#

ODE

Mathematica result

Maple result

4001

\[ {}x y^{\prime }+y = x \sin \relax (x ) \]

4002

\[ {}-y+x y^{\prime } = x^{2} \sin \relax (x ) \]

4003

\[ {}x y^{\prime }+x y^{2}-y = 0 \]

4004

\[ {}x y^{\prime }-y \left (2 y \ln \relax (x )-1\right ) = 0 \]

4005

\[ {}x^{2} \left (-1+x \right ) y^{\prime }-y^{2}-x \left (-2+x \right ) y = 0 \]

4006

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

4007

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]

4008

\[ {}2 \cos \relax (x ) y^{\prime } = \sin \relax (x ) y-y^{3} \]

4009

\[ {}\left (x -\cos \relax (y)\right ) y^{\prime }+\tan \relax (y) = 0 \]

4010

\[ {}y^{\prime } = x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \]

4011

\[ {}y^{\prime } = 2 \tan \relax (x ) \sec \relax (x )-y^{2} \sin \relax (x ) \]

4012

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

4013

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

4014

\[ {}2 x y y^{\prime }+\left (1+x \right ) y^{2} = {\mathrm e}^{x} \]

4015

\[ {}\cos \relax (y) y^{\prime }+\sin \relax (y) = x^{2} \]

4016

\[ {}\left (1+x \right ) y^{\prime }-y-1 = \left (1+x \right ) \sqrt {y+1} \]

4017

\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = {\mathrm e}^{x} \]

4018

\[ {}y^{\prime } \sin \relax (y)+\sin \relax (x ) \cos \relax (y) = \sin \relax (x ) \]

4019

\[ {}\left (x -y\right )^{2} y^{\prime } = 4 \]

4020

\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

4021

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

4022

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

4023

\[ {}y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0 \]

4024

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

4025

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]

4026

\[ {}y^{\prime } = \left (x^{2}+2 y-1\right )^{\frac {2}{3}}-x \]

4027

\[ {}x y^{\prime }+y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

4028

\[ {}2 y-x y \ln \relax (x )-2 x \ln \relax (x ) y^{\prime } = 0 \]

4029

\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \]

4030

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

4031

\[ {}y^{\prime }+8 x^{3} y^{3}+2 x y = 0 \]

4032

\[ {}\left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime } = y-x^{2} \sqrt {x^{2}-y^{2}} \]

4033

\[ {}y^{\prime }+a y = b \sin \left (k x \right ) \]

4034

\[ {}x y^{\prime }-y^{2}+1 = 0 \]

4035

\[ {}\left (y^{2}+a \sin \relax (x )\right ) y^{\prime } = \cos \relax (x ) \]

4036

\[ {}x y^{\prime } = x \,{\mathrm e}^{\frac {y}{x}}+x +y \]

4037

\[ {}y^{\prime }+y \cos \relax (x ) = {\mathrm e}^{-\sin \relax (x )} \]

4038

\[ {}x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0 \]

4039

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

4040

\[ {}x y^{\prime }+a y+b \,x^{n} = 0 \]

4041

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

4042

\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

4043

\[ {}\left (6 x y+x^{2}+3\right ) y^{\prime }+3 y^{2}+2 x y+2 x = 0 \]

4044

\[ {}x^{2} y^{\prime }+y^{2}+x y+x^{2} = 0 \]

4045

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \relax (x ) = 0 \]

4046

\[ {}\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

4047

\[ {}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0 \]

4048

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \relax (y) = 0 \]

4049

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 x y+x^{2}+3 = 0 \]

4050

\[ {}\cos \relax (x ) y^{\prime }+y+\left (\sin \relax (x )+1\right ) \cos \relax (x ) = 0 \]

4051

\[ {}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \]

4052

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

4053

\[ {}\left (x^{2}-y\right ) y^{\prime }-4 x y = 0 \]

4054

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

4055

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

4056

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

4057

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

4058

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

4059

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

4060

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

4061

\[ {}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0 \]

4062

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

4063

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

4064

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

4065

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4066

\[ {}y^{\prime \prime }-y = 0 \]

4067

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

4068

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

4069

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

4070

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

4071

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

4072

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

4073

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

4074

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

4075

\[ {}y^{\prime \prime \prime \prime } = 0 \]

4076

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

4077

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

4078

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

4079

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

4080

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

4081

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

4082

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

4083

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

4084

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

4085

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

4086

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

4087

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

4088

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

4089

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

4090

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

4091

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

4092

\[ {}y^{\relax (5)}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

4093

\[ {}y^{\prime \prime } = 0 \]

4094

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

4095

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

4096

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

4097

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

4098

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

4099

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

4100

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]