# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \] |
✓ |
✓ | |
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \] |
✓ |
✓ | |
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \] |
✓ |
✓ |
|
\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \relax (x ) \] |
✓ | ✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \relax (x ) \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \] |
✓ |
✓ |
|
\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+\left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+\left (y^{\prime }\right )^{2} = x \] |
✗ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x \left (y^{\prime }\right )^{2} = 1 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y \left (y^{\prime }\right )^{2} = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \relax (y) \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (y^{\prime }\right )^{3} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x^{2} \left (\sin ^{2}\left (\frac {y}{x}\right )\right )+\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \relax (x )+1\right ) \] |
✓ |
✓ |
|
\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+1 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{4} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \relax (x ) \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \relax (x )+1 \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \relax (x )+\sin \relax (x ) \] |
✓ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+\left (\cos \relax (x )-1\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \relax (x ) y^{\prime }-3 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = x^{2}+2 x \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+\left (x -6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+\cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3}+\cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \relax (x )+\sin ^{2}\relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2}+y^{2} = \sec ^{4}\relax (x ) \] |
✗ |
✗ |
|