# |
ODE |
Mathematica result |
Maple result |
\[ {}x y^{\prime } = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y \sin \relax (x ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\pi y \sin \relax (x ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \sin \relax (x ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \sin \relax (x ) \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{n} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (y^{\prime }\right )^{n} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = x \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = x +y \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = \frac {y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = \frac {y^{3}}{x} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3} = \frac {y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = \frac {1}{x y} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = \frac {1}{x y^{3}} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = \frac {1}{x^{2} y^{3}} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{4} = \frac {1}{x y^{3}} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = \frac {1}{x^{3} y^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1+6 x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+6 x +y\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+6 x +y\right )^{\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{\frac {7}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{n} = 0 \] |
✓ |
✓ |
|
\[ {}a y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}a \left (y^{\prime \prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}a \left (y^{\prime \prime }\right )^{n} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{2} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{2} = x \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{2}+y^{\prime } = 1 \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 1 \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{2}+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime \prime }\right )^{2}+y^{\prime }+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2}+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y \left (y^{\prime \prime }\right )^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (y^{\prime \prime }\right )^{2}+\left (y^{\prime }\right )^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} \left (y^{\prime \prime }\right )^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (y^{\prime \prime }\right )^{4}+\left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{3} \left (y^{\prime \prime }\right )^{2}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+\left (y^{\prime }\right )^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y \left (y^{\prime \prime }\right )^{3}+y^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (y^{\prime \prime }\right )^{3}+y^{3} \left (y^{\prime }\right )^{5} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \relax (x ) y^{\prime }+y \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (\sin \relax (x )+2 x \right ) y^{\prime }+\cos \relax (y) y \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } y^{\prime }+y^{n} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +y\right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \relax (x ) y^{\prime }+\left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+\cos \relax (x ) y^{\prime }+\sin \relax (y) \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 \left (y^{\prime }\right )^{2}}{y} = 0 \] |
✓ |
✓ |
|
\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} \left (y^{\prime }\right )^{2}}{\sin \relax (y)} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \] |
✓ |
✓ |
|