2.71 Problems 7001 to 7100

Table 2.71: Main lookup table

#

ODE

Mathematica result

Maple result

7001

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

7002

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

7003

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

7004

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (-2 x +1\right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

7005

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

7006

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

7007

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

7008

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

7009

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

7010

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

7011

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

7012

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

7013

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

7014

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

7015

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

7016

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

7017

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

7018

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

7019

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

7020

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7021

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7022

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

7023

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

7024

\[ {}\left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7025

\[ {}y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

7026

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7027

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

7028

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

7029

\[ {}x \left (1+x \right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

7030

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

7031

\[ {}x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

7032

\[ {}x \left (-1+x \right )^{2} y^{\prime \prime }-2 y = 0 \]

7033

\[ {}y^{\prime \prime }-2 x y^{\prime }+x^{2} y = 0 \]

7034

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

7035

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-\left (1+2 x \right ) \left (-y+x y^{\prime }\right ) = 0 \]

7036

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-x \left (4-x \right ) y^{\prime }+\left (3-x \right ) y = 0 \]

7037

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

7038

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

7039

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

7040

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

7041

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

7042

\[ {}x \left (2+x \right ) y^{\prime \prime }+2 \left (1+x \right ) y^{\prime }-2 y = 0 \]

7043

\[ {}x \left (2+x \right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }-4 y = 0 \]

7044

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7045

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7046

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

7047

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

7048

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

7049

\[ {}\left (2+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

7050

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

7051

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

7052

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7053

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

7054

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

7055

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

7056

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

7057

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

7058

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

7059

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7060

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

7061

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

7062

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

7063

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

7064

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

7065

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

7066

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7067

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

7068

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

7069

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }+2 y = 0 \]

7070

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7071

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7072

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

7073

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+30 y = 0 \]

7074

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

7075

\[ {}x y^{\prime \prime }+\left (1+2 x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

7076

\[ {}2 x \left (-1+x \right ) y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

7077

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

7078

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = 0 \]

7079

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

7080

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

7081

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

7082

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

7083

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

7084

\[ {}3 t \left (t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

7085

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

7086

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

7087

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

7088

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

7089

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

7090

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

7091

\[ {}2 x y^{\prime \prime }+\left (-2+x \right ) y^{\prime }-y = 0 \]

7092

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

7093

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

7094

\[ {}u^{\prime \prime }+\frac {u}{x^{2}} = 0 \]

7095

\[ {}u^{\prime \prime }-\left (1+2 x \right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

7096

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

7097

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7098

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

7099

\[ {}y^{\prime \prime }+\frac {y}{2 x^{4}} = 0 \]

7100

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]