2.83 Problems 8201 to 8300

Table 2.83: Main lookup table

#

ODE

Mathematica result

Maple result

8201

\[ {}y^{\prime } = \frac {1}{y+\sqrt {x}} \]

8202

\[ {}y^{\prime } = \frac {1}{y+2+\sqrt {3 x +1}} \]

8203

\[ {}y^{\prime } = \frac {x^{2}}{y+x^{\frac {3}{2}}} \]

8204

\[ {}y^{\prime } = \frac {x^{\frac {5}{3}}}{y+x^{\frac {4}{3}}} \]

8205

\[ {}y^{\prime } = \frac {i x^{2} \left (i-2 \sqrt {-x^{3}+6 y}\right )}{2} \]

8206

\[ {}y^{\prime } = \frac {x}{y+\sqrt {x^{2}+1}} \]

8207

\[ {}y^{\prime } = \frac {\left (-1+y \ln \relax (x )\right )^{2}}{x} \]

8208

\[ {}y^{\prime } = \frac {x \left (-2+3 \sqrt {x^{2}+3 y}\right )}{3} \]

8209

\[ {}y^{\prime } = \frac {\left (-1+2 y \ln \relax (x )\right )^{2}}{x} \]

8210

\[ {}y^{\prime } = \frac {{\mathrm e}^{b x}}{y \,{\mathrm e}^{-b x}+1} \]

8211

\[ {}y^{\prime } = \frac {x^{2} \left (1+2 \sqrt {x^{3}-6 y}\right )}{2} \]

8212

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}}{y \,{\mathrm e}^{-x}+1} \]

8213

\[ {}y^{\prime } = \frac {{\mathrm e}^{\frac {2 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

8214

\[ {}y^{\prime } = \frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \]

8215

\[ {}y^{\prime } = \frac {x \left (x +2 \sqrt {x^{3}-6 y}\right )}{2} \]

8216

\[ {}y^{\prime } = \left (-\ln \relax (y)+x^{2}\right ) y \]

8217

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x^{2}} x}{y \,{\mathrm e}^{x^{2}}+1} \]

8218

\[ {}y^{\prime } = -\left (-\ln \left (\ln \relax (y)\right )+\ln \relax (x )\right ) y \]

8219

\[ {}y^{\prime } = \left (-\ln \left (\ln \relax (y)\right )+\ln \relax (x )\right )^{2} y \]

8220

\[ {}y^{\prime } = \frac {y}{\ln \left (\ln \relax (y)\right )-\ln \relax (x )+1} \]

8221

\[ {}y^{\prime } = \frac {1+2 \sqrt {4 x^{2} y+1}\, x^{4}}{2 x^{3}} \]

8222

\[ {}y^{\prime } = \frac {\left (-y^{2}+4 a x \right )^{2}}{y} \]

8223

\[ {}y^{\prime } = \frac {x \left (-2+3 x \sqrt {x^{2}+3 y}\right )}{3} \]

8224

\[ {}y^{\prime } = -\frac {x^{2} \left (a x -2 \sqrt {a \left (a \,x^{4}+8 y\right )}\right )}{2} \]

8225

\[ {}y^{\prime } = \left (-\ln \relax (y)+x \right ) y \]

8226

\[ {}y^{\prime } = \frac {x^{3}+x^{2}+2 \sqrt {x^{3}-6 y}}{2+2 x} \]

8227

\[ {}y^{\prime } = \frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{\frac {5}{2}} y} \]

8228

\[ {}y^{\prime } = -\frac {x^{3} \left (x \sqrt {a}+\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (1+x \right )} \]

8229

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x \sqrt {x^{2}-2 x +1+8 y} \]

8230

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

8231

\[ {}y^{\prime } = \frac {\left (\ln \relax (y)+x^{2}\right ) y}{x} \]

8232

\[ {}y^{\prime } = \frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \]

8233

\[ {}y^{\prime } = -\frac {x}{2}+1+x \sqrt {x^{2}-4 x +4 y} \]

8234

\[ {}y^{\prime } = -\frac {2 x^{2}+2 x -3 \sqrt {x^{2}+3 y}}{3 \left (1+x \right )} \]

8235

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-\frac {4 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

8236

\[ {}y^{\prime } = \frac {\left (\ln \relax (y)+x^{3}\right ) y}{x} \]

8237

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x^{2} \sqrt {x^{2}-2 x +1+8 y} \]

8238

\[ {}y^{\prime } = -\frac {x^{2}-1-4 \sqrt {x^{2}-2 x +1+8 y}}{4 \left (1+x \right )} \]

8239

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

8240

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

8241

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x^{2} \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

8242

\[ {}y^{\prime } = \frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \]

8243

\[ {}y^{\prime } = \frac {2 a +x^{2} \sqrt {-y^{2}+4 a x}}{y} \]

8244

\[ {}y^{\prime } = -\frac {x}{2}+1+x^{2} \sqrt {x^{2}-4 x +4 y} \]

8245

\[ {}y^{\prime } = -\frac {\left (\sqrt {a}\, x^{4}+x^{3} \sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (1+x \right )} \]

8246

\[ {}y^{\prime } = \left (-\ln \relax (y)+1+x^{2}+x^{3}\right ) y \]

8247

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 b x}}{y \,{\mathrm e}^{-b x}+1} \]

8248

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 x}}{y \,{\mathrm e}^{-x}+1} \]

8249

\[ {}y^{\prime } = \frac {\left (-2 y^{\frac {3}{2}}+3 \,{\mathrm e}^{x}\right )^{2} {\mathrm e}^{x}}{4 \sqrt {y}} \]

8250

\[ {}y^{\prime } = \frac {i x \left (i-2 \sqrt {-x^{2}+4 \ln \relax (a )+4 \ln \relax (y)}\right ) y}{2} \]

8251

\[ {}y^{\prime } = \frac {\left (x y^{2}+1\right )^{2}}{y x^{4}} \]

8252

\[ {}y^{\prime } = \frac {x^{2} \left (3 x +\sqrt {-9 x^{4}+4 y^{3}}\right )}{y^{2}} \]

8253

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{2}+x^{2}}{2 x} \]

8254

\[ {}y^{\prime } = -\frac {x^{2}-x -2-2 \sqrt {x^{2}-4 x +4 y}}{2 \left (1+x \right )} \]

8255

\[ {}y^{\prime } = \frac {y+x^{3} a \,{\mathrm e}^{x}+a \,x^{4}+a \,x^{3}-x y^{2} {\mathrm e}^{x}-x^{2} y^{2}-x y^{2}}{x} \]

8256

\[ {}y^{\prime } = \frac {x +1+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3} \left (1+x \right )} \]

8257

\[ {}y^{\prime } = \frac {y+x^{3} a \ln \left (1+x \right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (1+x \right )-x^{2} y^{2}-x y^{2}}{x} \]

8258

\[ {}y^{\prime } = \frac {x^{2} \left (x +1+2 x \sqrt {x^{3}-6 y}\right )}{2+2 x} \]

8259

\[ {}y^{\prime } = \frac {y+x^{3} \ln \relax (x )+x^{4}+x^{3}+7 x y^{2} \ln \relax (x )+7 x^{2} y^{2}+7 x y^{2}}{x} \]

8260

\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 \sqrt {x^{2}+2 x +1-4 y}}{2+2 x} \]

8261

\[ {}y^{\prime } = \frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+x^{4} b +b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+x^{2} a y^{2}+a x y^{2}}{x} \]

8262

\[ {}y^{\prime } = \frac {2 a}{x \left (-x y+2 a x y^{2}-8 a^{2}\right )} \]

8263

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (\left (1+x \right ) x \right ) y x^{4}-\ln \left (\left (1+x \right ) x \right ) x^{3}\right )}{x} \]

8264

\[ {}y^{\prime } = \frac {y+\sqrt {x^{2}+y^{2}}\, x^{2}}{x} \]

8265

\[ {}y^{\prime } = \frac {y+\ln \left (\left (-1+x \right ) \left (1+x \right )\right ) x^{3}+7 \ln \left (\left (-1+x \right ) \left (1+x \right )\right ) x y^{2}}{x} \]

8266

\[ {}y^{\prime } = \frac {y^{3} x \,{\mathrm e}^{2 x^{2}}}{y \,{\mathrm e}^{x^{2}}+1} \]

8267

\[ {}y^{\prime } = \frac {y-\ln \left (\frac {1+x}{-1+x}\right ) x^{3}+\ln \left (\frac {1+x}{-1+x}\right ) x y^{2}}{x} \]

8268

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{\frac {1+x}{-1+x}} x^{3}+{\mathrm e}^{\frac {1+x}{-1+x}} x y^{2}}{x} \]

8269

\[ {}y^{\prime } = \frac {x y-y-{\mathrm e}^{1+x} x^{3}+{\mathrm e}^{1+x} x y^{2}}{\left (-1+x \right ) x} \]

8270

\[ {}y^{\prime } = \frac {-x^{2}+1+4 x^{3} \sqrt {x^{2}-2 x +1+8 y}}{4+4 x} \]

8271

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \]

8272

\[ {}y^{\prime } = \frac {y+x^{3} \sqrt {x^{2}+y^{2}}}{x} \]

8273

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 b x}+y^{3} {\mathrm e}^{-3 b x}\right ) {\mathrm e}^{b x} \]

8274

\[ {}y^{\prime } = \frac {x +1+2 \sqrt {4 x^{2} y+1}\, x^{3}}{2 x^{3} \left (1+x \right )} \]

8275

\[ {}y^{\prime } = \frac {y \ln \left (-1+x \right )+x^{4}+x^{3}+x^{2} y^{2}+x y^{2}}{\ln \left (-1+x \right ) x} \]

8276

\[ {}y^{\prime } = \frac {y \ln \left (-1+x \right )+{\mathrm e}^{1+x} x^{3}+7 \,{\mathrm e}^{1+x} x y^{2}}{\ln \left (-1+x \right ) x} \]

8277

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-\frac {4 x}{3}}+y^{3} {\mathrm e}^{-2 x}\right ) {\mathrm e}^{\frac {2 x}{3}} \]

8278

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 x}+y^{3} {\mathrm e}^{-3 x}\right ) {\mathrm e}^{x} \]

8279

\[ {}y^{\prime } = \frac {x \left (-2 x -2+3 x^{2} \sqrt {x^{2}+3 y}\right )}{3+3 x} \]

8280

\[ {}y^{\prime } = \frac {1}{x \left (x y^{2}+1+x \right ) y} \]

8281

\[ {}y^{\prime } = \frac {2 x \,{\mathrm e}^{x}-2 x -\ln \relax (x )-1+x^{4} \ln \relax (x )+x^{4}-2 y x^{2} \ln \relax (x )-2 x^{2} y+y^{2} \ln \relax (x )+y^{2}}{{\mathrm e}^{x}-1} \]

8282

\[ {}y^{\prime } = \frac {-y \,{\mathrm e}^{x}+x y-x^{3} \ln \relax (x )-x^{3}-x y^{2} \ln \relax (x )-x y^{2}}{\left (-{\mathrm e}^{x}+x \right ) x} \]

8283

\[ {}y^{\prime } = \frac {y \left (1-x +y x^{2} \ln \relax (x )+x^{3} y-x \ln \relax (x )-x^{2}\right )}{\left (-1+x \right ) x} \]

8284

\[ {}y^{\prime } = \frac {y \ln \relax (x ) x -y+2 x^{5} b +2 x^{3} a y^{2}}{\left (x \ln \relax (x )-1\right ) x} \]

8285

\[ {}y^{\prime } = \frac {\left (\ln \relax (y)+x +x^{3}+x^{4}\right ) y}{x} \]

8286

\[ {}y^{\prime } = -\frac {\left (-\ln \left (y-1\right )+\ln \left (y+1\right )+2 \ln \relax (x )\right ) x \left (y+1\right )^{2}}{8} \]

8287

\[ {}y^{\prime } = \frac {\left (-\ln \left (y-1\right )+\ln \left (y+1\right )+2 \ln \relax (x )\right )^{2} x \left (y+1\right )^{2}}{16} \]

8288

\[ {}y^{\prime } = \frac {\left (-y^{2}+4 a x \right )^{3}}{\left (-y^{2}+4 a x -1\right ) y} \]

8289

\[ {}y^{\prime } = \frac {2 a x +2 a +x^{3} \sqrt {-y^{2}+4 a x}}{\left (1+x \right ) y} \]

8290

\[ {}y^{\prime } = \frac {-\ln \relax (x )+{\mathrm e}^{\frac {1}{x}}+4 x^{2} y+2 x +2 x y^{2}+2 x^{3}}{\ln \relax (x )-{\mathrm e}^{\frac {1}{x}}} \]

8291

\[ {}y^{\prime } = -\frac {\left (\ln \relax (y) x +\ln \relax (y)-1\right ) y}{1+x} \]

8292

\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 x^{3} \sqrt {x^{2}+2 x +1-4 y}}{2+2 x} \]

8293

\[ {}y^{\prime } = \frac {-b y a +b^{2}+a b +b^{2} x -b a \sqrt {x}-a^{2}}{a \left (-a y+b +a +b x -a \sqrt {x}\right )} \]

8294

\[ {}y^{\prime } = -\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y x^{2} \ln \relax (x )+x^{3} y-x \ln \relax (x )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \]

8295

\[ {}y^{\prime } = \frac {-x^{2}+x +2+2 x^{3} \sqrt {x^{2}-4 x +4 y}}{2+2 x} \]

8296

\[ {}y^{\prime } = \frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (1+x \right ) y^{2}} \]

8297

\[ {}y^{\prime } = -\frac {x^{2}+x +a x +a -2 \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 \left (1+x \right )} \]

8298

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{2 x^{2}}+y^{3} {\mathrm e}^{3 x^{2}}\right ) {\mathrm e}^{-x^{2}} x \]

8299

\[ {}y^{\prime } = \frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \]

8300

\[ {}y^{\prime } = \frac {x^{3} \left (3 x +3+\sqrt {9 x^{4}-4 y^{3}}\right )}{\left (1+x \right ) y^{2}} \]