2.13 problem 589

Internal problem ID [8169]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 589.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_symmetry_[F(x),G(y)]]]

Solve \begin {gather*} \boxed {y^{\prime }-\frac {F \left (-\frac {-1+y \ln \relax (x )}{y}\right ) y^{2}}{x}=0} \end {gather*}

Solution by Maple

Time used: 0.062 (sec). Leaf size: 51

dsolve(diff(y(x),x) = F(-(-1+y(x)*ln(x))/y(x))*y(x)^2/x,y(x), singsol=all)
 

\begin{align*} y \relax (x ) = \frac {1}{\ln \relax (x )+\RootOf \left (F \left (\textit {\_Z} \right )+1\right )} \\ \int _{\textit {\_b}}^{y \relax (x )}\frac {1}{\left (F \left (\frac {1-\textit {\_a} \ln \relax (x )}{\textit {\_a}}\right )+1\right ) \textit {\_a}^{2}}d \textit {\_a} -\ln \relax (x )-c_{1} = 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.198 (sec). Leaf size: 245

DSolve[y'[x] == (F[(1 - Log[x]*y[x])/y[x]]*y[x]^2)/x,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {1}{\left (-F\left (\frac {1-K[2] \log (x)}{K[2]}\right )-1\right ) K[2]^2}-\int _1^x\left (\frac {\left (-\frac {\log (K[1])}{K[2]}-\frac {1-K[2] \log (K[1])}{K[2]^2}\right ) F'\left (\frac {1-K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-K[2] \log (K[1])}{K[2]}\right )+1\right ) K[1]}-\frac {F\left (\frac {1-K[2] \log (K[1])}{K[2]}\right ) \left (-\frac {\log (K[1])}{K[2]}-\frac {1-K[2] \log (K[1])}{K[2]^2}\right ) F'\left (\frac {1-K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-K[2] \log (K[1])}{K[2]}\right )+1\right )^2 K[1]}\right )dK[1]\right )dK[2]+\int _1^x\frac {F\left (\frac {1-\log (K[1]) y(x)}{y(x)}\right )}{\left (F\left (\frac {1-\log (K[1]) y(x)}{y(x)}\right )+1\right ) K[1]}dK[1]=c_1,y(x)\right ] \]