10.11 problem Exercise 35.11, page 504

Internal problem ID [4153]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.11, page 504.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

Solve \begin {gather*} \boxed {r^{\prime \prime }-\frac {h^{2}}{r^{3}}+\frac {k}{r^{2}}=0} \end {gather*}

Solution by Maple

Time used: 0.04 (sec). Leaf size: 441

dsolve(diff(r(t),t$2)= h^2/r(t)^3-k/r(t)^2,r(t), singsol=all)
 

\begin{align*} r \relax (t ) = \frac {c_{1} \left (c_{1}^{2} k^{2}-2 k c_{1} {\mathrm e}^{\RootOf \left (\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2} h^{2}-2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_{2}-2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}+{\mathrm e}^{2 \RootOf \left (\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2} h^{2}-2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_{2}-2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}+h^{2}\right ) {\mathrm e}^{-\RootOf \left (\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2} h^{2}-2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_{2}-2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}}{2} \\ r \relax (t ) = \frac {c_{1} \left (c_{1}^{2} k^{2}-2 k c_{1} {\mathrm e}^{\RootOf \left (\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2} h^{2}+2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_{2}+2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}+{\mathrm e}^{2 \RootOf \left (\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2} h^{2}+2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_{2}+2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}+h^{2}\right ) {\mathrm e}^{-\RootOf \left (\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4} k^{2}+2 \textit {\_Z} c_{1}^{3} k \,{\mathrm e}^{\textit {\_Z}}-\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{2 \textit {\_Z}} c_{1}^{2}+\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2} h^{2}+2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} c_{2}+2 \,\mathrm {csgn}\left (\frac {1}{c_{1}}\right ) {\mathrm e}^{\textit {\_Z}} t \right )}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 1.067 (sec). Leaf size: 130

DSolve[r''[t]==h^2/r[t]^3-k/r[t]^2,r[t],t,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\frac {\left (\sqrt {c_1} \left (-h^2+r(t) (2 k+c_1 r(t))\right )-k \sqrt {-h^2+r(t) (2 k+c_1 r(t))} \tanh ^{-1}\left (\frac {k+c_1 r(t)}{\sqrt {c_1} \sqrt {-h^2+r(t) (2 k+c_1 r(t))}}\right )\right ){}^2}{c_1{}^3 r(t)^2 \left (-\frac {h^2}{r(t)^2}+\frac {2 k}{r(t)}+c_1\right )}=(t+c_2){}^2,r(t)\right ] \]