1.5 problem 1.1.5

Internal problem ID [9586]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, First-Order differential equations
Problem number: 1.1.5.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

Solve \begin {gather*} \boxed {g \relax (x ) y^{\prime }-f_{1}\relax (x ) y-f_{n}\relax (x ) y^{n}=0} \end {gather*}

Solution by Maple

Time used: 0.052 (sec). Leaf size: 119

dsolve(g(x)*diff(y(x),x)=f__1(x)*y(x)+f__n(x)*y(x)^n,y(x), singsol=all)
 

\[ y \relax (x ) = \left (\int \left (-\frac {n \,{\mathrm e}^{\int \left (\frac {f_{1}\relax (x ) n}{g \relax (x )}-\frac {f_{1}\relax (x )}{g \relax (x )}\right )d x} f_{n}\relax (x )}{g \relax (x )}+\frac {{\mathrm e}^{\int \left (\frac {f_{1}\relax (x ) n}{g \relax (x )}-\frac {f_{1}\relax (x )}{g \relax (x )}\right )d x} f_{n}\relax (x )}{g \relax (x )}\right )d x +c_{1}\right )^{-\frac {1}{n -1}} {\mathrm e}^{\frac {\left (\int \frac {f_{1}\relax (x )}{g \relax (x )}d x \right ) n}{n -1}} {\mathrm e}^{\int -\frac {f_{1}\relax (x )}{\left (n -1\right ) g \relax (x )}d x} \]

Solution by Mathematica

Time used: 3.923 (sec). Leaf size: 84

DSolve[g[x]*y'[x]==f1[x]*y[x]+fn[x]*y[x]^n,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \left (\exp \left (-\left ((n-1) \int _1^x\frac {\text {f1}(K[1])}{g(K[1])}dK[1]\right )\right ) \left (-(n-1) \int _1^x\frac {\exp \left ((n-1) \int _1^{K[2]}\frac {\text {f1}(K[1])}{g(K[1])}dK[1]\right ) \text {fn}(K[2])}{g(K[2])}dK[2]+c_1\right )\right ){}^{\frac {1}{1-n}} \\ \end{align*}