2.101 Problems 10001 to 10100

Table 2.101: Main lookup table

#

ODE

Mathematica result

Maple result

10001

yya(1bx)y=a2b

10002

yy=xn1((2n+1)x+an)ynx2n(x+a)

10003

yy=a(bn+x)xn1y+c(x2(2n+1)bx+n(n+1)b2)x2n1

10004

yy=(a(2n+k)xk+b)xn1y+(a2nx2kabxk+c)x2n1

10005

yy=(a(2n+k)x2k+b(2mk))xmk1ya2mx4k+cx2k+b2mx

10006

yy=((m+2L3)x+n2L+3)yx+((mL1)x2+(nm2L+3)xn+L2)x12L

10007

yy=(a(2n+1)x2+cx+b(2n1))xn2y(na2x4+acx3+nb2+bcx+dx2)x2n3

10008

yy=(a(n1)x+b(2λ+n))xλ1(ax+b)λ2y(anx+b(λ+n))x1+2λ(ax+b)2λ3

10009

yya((m1)x+1)yx=a2(mx+1)(x1)x

10010

yya(1bx)y=a2bx

10011

yy=3y(ax+b)13x53+3(ax+b)23x73

10012

3yy=(7λs(3s+4λ)x+6s2λ)yx13+6λsx6x23+2(λs(3s+4λ)x+5λ)(λs(3s+4λ)x+3s+4λ)x13

10013

yy+a(6x1)y2x=a2(x1)(4x1)2x

10014

yya(1+2bx2)y2=a2(3x+4bx)16

10015

yy+a(13x20)y14x97=3a2(x1)(x8)14x1117

10016

yy+5a(23x16)y56x97=3a2(x1)(25x32)56x1117

10017

yy+a(19x+85)y26x1813=3a2(x1)(x+25)26x2313

10018

yy+a(13x18)y15x75=4a2(x1)(x6)15x95

10019

yy+a(5x+1)y2x=a2(x2+1)

10020

yy+3a(19x14)x75y35=4a2(x1)(9x14)x9535

10021

yy+3a(3x+7)y10x1310=a2(x1)(x+9)5x85

10022

yy+a(7x12)y10x75=a2(x1)(x16)10x95

10023

yy+3a(13x8)y20x75=a2(x1)(27x32)20x95

10024

yy+3a(3x+11)y14x107=a2(x1)(x27)14x137

10025

yya(x+1)y2x74=a2(x1)(3x+5)4x52

10026

yya(x+1)y2x74=a2(x1)(x+5)4x52

10027

yya(4x+3)y14x87=a2(x1)(16x+5)14x97

10028

yy+a(13x3)y6x23=a2(x1)(5x1)6x13

10029

yya(8x1)y28x87=a2(x1)(32x+3)28x97

10030

yya(5x4)yx4=a2(x1)(3x1)x7

10031

yy2a(3x10)y5x4=a2(x1)(8x5)5x7

10032

yy+a(39x4)y42x97=a2(x1)(9x1)42x117

10033

yy+a(2+x)yx=2a2(x1)x

10034

yy+a(3x2)yx=2a2(x1)2x

10035

yy+a(1bx2)yx=a2bx

10036

yya(3x4)y4x52=a2(x1)(2+x)4x4

10037

yy+a(33x+2)y30x65=a2(x1)(9x4)30x75

10038

yya(x8)y8x52=a2(x1)(3x4)8x4

10039

yy+a(17x+18)y30x2215=a2(x1)(x+4)30x2915

10040

yya(6x13)y13x52=a2(x1)(x13)26x4

10041

yy+a(24x+11)x2720y30=a2(x1)(9x+1)60x1710

10042

yy2a(2+3x)y5x85=a2(x1)(8x+1)5x115

10043

yy6a(1+4x)y5x75=a2(x1)(27x+8)5x95

10044

yya(x+4)y5x85=a2(x1)(3x+7)5x35

10045

yya(x+4)y5x85=a2(x1)(3x+7)5x115

10046

yya(2x1)yx52=a2(x1)(3x+1)2x4

10047

yy+a(x6)y5x75=2a2(x1)(x+4)5x95

10048

yy+a(21x+19)y5x75=2a2(x1)(9x4)5x95

10049

yy3ayx74=a2(x1)(x9)4x52

10050

yya((k+1)x1)yx2=a2(k+1)(x1)x2

10051

yya((k2)x+2k3)xky=a2(k2)(x1)2x12k

10052

yya((4k7)x4k+5)xky2=a2(2k3)(x1)2x12k2

10053

yy((2n1)xan)xn1y=n(xa)x2n

10054

yy((n+1)xan)xn1(xa)n2y=nx2n(xa)2n3

10055

yya((2k3)x+1)xky=a2(k2)((k1)x+1)x22k

10056

yya((n+2k3)x+32k)xky=a2((n+k1)x2(n+2k3)x+k2)x12k

10057

yya((n+2)x2)x2n+1nyn=a2((n+1)x22xn+1)x3n+2nn

10058

yya((n+4)xn+22)x2n+1nyn=a2(2x2+(n2+n4)x(n1)(n+2))x3n+2nn(n+2)

10059

yy+a((3n+5)x2+n1n+1)xn+4n+3yn+3=a2((n+1)x2(n2+2n+5)xn+1+4n+1)xn+5n+32n+6

10060

yya(n+2n+bxn)y=a2x(n+1n+bxn)n

10061

yy=(aex+b)y+ce2xabexb2

10062

yy=(a(2μ+λ)eλx+b)eμxy+(a2μe2λxabeλx+c)e2μx

10063

yy=(eλxa+b)y+c(a2e2λx+ab(λx+1)eλx+b2λx)

10064

yy=eλx(2aλx+a+b)ye2λx(a2λx2+abx+c)

10065

yy=eax(2ax2+b+2x)y+e2ax(ax4bx2+c)

10066

yy+a(2bx+1)ebxy=a2bx2e2bx

10067

yya(1+2n+2n(n+1)x)e(n+1)xy=a2n(n+1)(nx+1)xe2(n+1)x

10068

yy+a(1+2bx)e2bxy=a2bx32e4bx

10069

yy=(acosh(x)+b)yabsinh(x)+c

10070

yy=(asinh(x)+b)yabcosh(x)+c

10071

yy=(2ln(x)+a+1)y+x(ln(x)2aln(x)+b)

10072

yy=(2ln(x)2+2ln(x)+a)y+x(ln(x)4aln(x)2+b)

10073

yy=axcos(λx2)y+x

10074

yy=axsin(λx2)y+x

10075

(Ay+Bx+a)y+By+kx+b=0

10076

(y+ax+b)y=αy+βx+γ

10077

(y+akx2+bx+c)y=ay2+2akxy+my+k(k+bm)x+s

10078

(y+Axn+a)y+nAxn1y+kxm+b=0

10079

(y+xn+1a+bxn)y=(anxn+cxn1)y

10080

xyy=ay2+by+cxn+s

10081

xyy=ny2+a(2n+1)xy+bya2nx2abx+c

10082

y+ay=0

10083

y(ax+b)y=0

10084

y(a2x2+a)y=0

10085

y(ax2+b)y=0

10086

y+a3x(ax+2)y=0

10087

y(ax2+bcx)y=0

10088

yaxny=0

10089

ya(ax2n+nxn1)y=0

10090

yaxn2(axn+n+1)y=0

10091

y+(ax2n+bxn1)y=0

10092

y+ay+by=0

10093

y+ay+(bx+c)y=0

10094

y+ay(bx2+c)y=0

10095

y+ay+b(bx2+ax+1)y=0

10096

y+ay+bx(bx3+ax+2)y=0

10097

y+ay+b(bx2n+axn+nxn1)y=0

10098

y+ay+b(bx2naxn+nxn1)y=0

10099

y+xy+(n1)y=0

10100

y2xy+2ny=0