# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = \frac {\cos \relax (x )-2 x y^{2}}{2 x^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{\frac {2}{3}}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x^{n} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = 6 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{\ln \relax (x ) x} \] |
✓ |
✓ |
|
\[ {}y-\left (x -1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3} \] |
✓ |
✓ |
|
\[ {}y-x y^{\prime } = 3-2 x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \relax (x ) \sin \relax (y)}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \] |
✓ |
✓ |
|
\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \relax (y) \cos \relax (x )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 \sqrt {y-1}}{3} \] |
✓ |
✓ |
|
\[ {}m v^{\prime } = m g -k v^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 4 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-4 x y = x^{7} \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = 2 x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{-x^{2}+1} = 4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 \left (\cos ^{2}\relax (x )\right ) y^{\prime }+y \sin \left (2 x \right ) = 4 \left (\cos ^{4}\relax (x )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{\ln \relax (x ) x} = 9 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \relax (x ) = 8 \left (\sin ^{3}\relax (x )\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } t +2 x = 4 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \relax (x ) \left (y \sec \relax (x )-2\right ) \] |
✓ |
✓ |
|
\[ {}1-y \sin \relax (x )-\cos \relax (x ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {m y}{x} = \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \relax (x )-y \cos \relax (x ) = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \] |
✓ |
✓ |
|
\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & x \le 1 \\ 0 & 1<x \end {array}\right . \] | ✓ | ✓ |
|
\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1-x & x <1 \\ 0 & 1\le x \end {array}\right . \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \relax (x ) = 2 \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{2} \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}\left (-y+3 x \right ) y^{\prime } = 3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \] |
✓ |
✓ |
|
\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {9 x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y \ln \relax (x ) = y \ln \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \] |
✓ |
✓ |
|
\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {4 y-2 x}{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {4 x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {a y+x}{a x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \relax (x )}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y \tan \relax (x )}{2} = 2 y^{3} \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{\frac {1}{3}} x^{2} \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \] |
✓ |
✓ |
|
\[ {}2 x \left (y^{\prime }+y^{3} x^{2}\right )+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (-a +b \right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{\frac {2}{3}} \cos \relax (x )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 x y = 4 x^{3} \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{2 \ln \relax (x ) x} = 2 x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+y \cot \relax (x ) = \frac {8 \left (\cos ^{3}\relax (x )\right )}{y} \] |
✓ |
✓ |
|
\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \relax (x ) = y^{\sqrt {3}} \sec \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \relax (x ) = y^{3} \left (\sin ^{3}\relax (x )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (9 x -y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin ^{2}\left (3 x -3 y+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+p \relax (x ) y+q \relax (x ) y^{2} = r \relax (x ) \] |
✗ |
✗ |
|
\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \] |
✓ |
✓ |
|