2.64 Problems 6301 to 6400

Table 2.64: Main lookup table

#

ODE

Mathematica result

Maple result

6301

\[ {}y^{\prime } = 1+\frac {\sec \relax (x )}{x} \]

6302

\[ {}y^{\prime } = x +\frac {\sec \relax (x ) y}{x} \]

6303

\[ {}y^{\prime } = \frac {2 y}{x} \]

6304

\[ {}y^{\prime } = \frac {2 y}{x} \]

6305

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

6306

\[ {}y^{\prime } = \frac {1}{x} \]

6307

\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \]

6308

\[ {}\frac {\left (y^{\prime }\right )^{2}}{4}-x y^{\prime }+y = 0 \]

6309

\[ {}y^{\prime } = \sqrt {\frac {y+1}{y^{2}}} \]

6310

\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

6311

\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (-2 x +1\right ) y^{4}}{3} \]

6312

\[ {}y^{\prime } = \sqrt {y}+x \]

6313

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

6314

\[ {}y = x y^{\prime }+x^{2} \left (y^{\prime }\right )^{2} \]

6315

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

6316

\[ {}x y^{\prime } = 0 \]

6317

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

6318

\[ {}\frac {y^{\prime }}{x} = 0 \]

6319

\[ {}y^{\prime } = 0 \]

6320

\[ {}y = x \left (y^{\prime }\right )^{2}+\left (y^{\prime }\right )^{2} \]

6321

\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \]

6322

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

6323

\[ {}y^{\prime } = \frac {1}{1-y} \]

6324

\[ {}p^{\prime } = a p-b p^{2} \]

6325

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

6326

\[ {}x f^{\prime }-f = \frac {\left (f^{\prime }\right )^{2} \left (1-\left (f^{\prime }\right )^{\lambda }\right )^{2}}{\lambda ^{2}} \]

6327

\[ {}x y^{\prime }-2 y+b y^{2} = c \,x^{4} \]

6328

\[ {}x y^{\prime }-y+y^{2} = x^{\frac {2}{3}} \]

6329

\[ {}u^{\prime }+u^{2} = \frac {1}{x^{\frac {4}{5}}} \]

6330

\[ {}y y^{\prime }-y = x \]

6331

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6332

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

6333

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

6334

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \relax (x ) \]

6335

\[ {}y = x \left (y^{\prime }\right )^{2} \]

6336

\[ {}y y^{\prime } = 1-x \left (y^{\prime }\right )^{3} \]

6337

\[ {}f^{\prime } = \frac {1}{f} \]

6338

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

6339

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]

6340

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

6341

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

6342

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

6343

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

6344

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

6345

\[ {}y^{\prime \prime } = 0 \]

6346

\[ {}y^{\prime \prime } = 1 \]

6347

\[ {}y^{\prime \prime } = f \relax (t ) \]

6348

\[ {}y^{\prime \prime } = k \]

6349

\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \]

6350

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

6351

\[ {}y^{\prime \prime } = 4 \sin \relax (x )-4 \]

6352

\[ {}y y^{\prime \prime } = 0 \]

6353

\[ {}y y^{\prime \prime } = 1 \]

6354

\[ {}y y^{\prime \prime } = x \]

6355

\[ {}y^{2} y^{\prime \prime } = x \]

6356

\[ {}y^{2} y^{\prime \prime } = 0 \]

6357

\[ {}3 y y^{\prime \prime } = \sin \relax (x ) \]

6358

\[ {}3 y y^{\prime \prime }+y = 5 \]

6359

\[ {}a y y^{\prime \prime }+b y = c \]

6360

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

6361

\[ {}a y y^{\prime \prime }+b y = 0 \]

6362

\[ {}[x^{\prime }\relax (t ) = 9 x \relax (t )+4 y \relax (t ), y^{\prime }\relax (t ) = -6 x \relax (t )-y \relax (t ), z^{\prime }\relax (t ) = 6 x \relax (t )+4 y \relax (t )+3 z \relax (t )] \]

6363

\[ {}[x^{\prime }\relax (t ) = x \relax (t )-3 y \relax (t ), y^{\prime }\relax (t ) = 3 x \relax (t )+7 y \relax (t )] \]

6364

\[ {}[x^{\prime }\relax (t ) = x \relax (t )-2 y \relax (t ), y^{\prime }\relax (t ) = 2 x \relax (t )+5 y \relax (t )] \]

6365

\[ {}[x^{\prime }\relax (t ) = 7 x \relax (t )+y \relax (t ), y^{\prime }\relax (t ) = -4 x \relax (t )+3 y \relax (t )] \]

6366

\[ {}[x^{\prime }\relax (t ) = x \relax (t )+y \relax (t ), y^{\prime }\relax (t ) = y \relax (t ), z^{\prime }\relax (t ) = z \relax (t )] \]

6367

\[ {}[x^{\prime }\relax (t ) = 2 x \relax (t )+y \relax (t )-z \relax (t ), y^{\prime }\relax (t ) = -x \relax (t )+2 z \relax (t ), z^{\prime }\relax (t ) = -x \relax (t )-2 y \relax (t )+4 z \relax (t )] \]

6368

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{\frac {3}{4}}-3 k x \]

6369

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+\left (y^{\prime }\right )^{2}}}{2}} = -x \]

6370

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+\left (y^{\prime }\right )^{2}}}{2}} = -x \]

6371

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

6372

\[ {}y^{\prime } = x^{2}+y^{2} \]

6373

\[ {}y^{\prime } = 2 \sqrt {y} \]

6374

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

6375

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

6376

\[ {}y^{\prime } = x^{2}+y^{2}-1 \]

6377

\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]

6378

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

6379

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

6380

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

6381

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

6382

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

6383

\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \]

6384

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

6385

\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

6386

\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]

6387

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \]

6388

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \]

6389

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \]

6390

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \]

6391

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

6392

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \]

6393

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

6394

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

6395

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

6396

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

6397

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

6398

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

6399

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

6400

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]