# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = 1+\frac {\sec \relax (x )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\frac {\sec \relax (x ) y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {\left (y^{\prime }\right )^{2}}{4}-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\frac {y+1}{y^{2}}} \] |
✓ |
✓ | |
\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (-2 x +1\right ) y^{4}}{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {y}+x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+x^{2} \left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{x +y} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = x \left (y^{\prime }\right )^{2}+\left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{1-y} \] |
✓ |
✓ |
|
\[ {}p^{\prime } = a p-b p^{2} \] |
✓ |
✓ |
|
\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x f^{\prime }-f = \frac {\left (f^{\prime }\right )^{2} \left (1-\left (f^{\prime }\right )^{\lambda }\right )^{2}}{\lambda ^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y+b y^{2} = c \,x^{4} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y+y^{2} = x^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}u^{\prime }+u^{2} = \frac {1}{x^{\frac {4}{5}}} \] |
✓ |
✓ |
|
\[ {}y y^{\prime }-y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y = x \left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = 1-x \left (y^{\prime }\right )^{3} \] |
✓ |
✓ |
|
\[ {}f^{\prime } = \frac {1}{f} \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \] |
✗ |
✓ |
|
\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = f \relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = k \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \] |
✗ | ✓ |
|
\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime } = 4 \sin \relax (x )-4 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = x \] |
✗ |
✗ |
|
\[ {}y^{2} y^{\prime \prime } = x \] |
✗ |
✓ |
|
\[ {}y^{2} y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y y^{\prime \prime } = \sin \relax (x ) \] |
✗ |
✗ |
|
\[ {}3 y y^{\prime \prime }+y = 5 \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }+b y = c \] |
✓ |
✓ |
|
\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \] |
✓ |
✓ |
|
\[ {}a y y^{\prime \prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\relax (t ) = 9 x \relax (t )+4 y \relax (t ), y^{\prime }\relax (t ) = -6 x \relax (t )-y \relax (t ), z^{\prime }\relax (t ) = 6 x \relax (t )+4 y \relax (t )+3 z \relax (t )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\relax (t ) = x \relax (t )-3 y \relax (t ), y^{\prime }\relax (t ) = 3 x \relax (t )+7 y \relax (t )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\relax (t ) = x \relax (t )-2 y \relax (t ), y^{\prime }\relax (t ) = 2 x \relax (t )+5 y \relax (t )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\relax (t ) = 7 x \relax (t )+y \relax (t ), y^{\prime }\relax (t ) = -4 x \relax (t )+3 y \relax (t )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\relax (t ) = x \relax (t )+y \relax (t ), y^{\prime }\relax (t ) = y \relax (t ), z^{\prime }\relax (t ) = z \relax (t )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\relax (t ) = 2 x \relax (t )+y \relax (t )-z \relax (t ), y^{\prime }\relax (t ) = -x \relax (t )+2 z \relax (t ), z^{\prime }\relax (t ) = -x \relax (t )-2 y \relax (t )+4 z \relax (t )] \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{\frac {3}{4}}-3 k x \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+\left (y^{\prime }\right )^{2}}}{2}} = -x \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+\left (y^{\prime }\right )^{2}}}{2}} = -x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}+y^{2}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \] |
✓ |
✓ |
|