2.70 Problems 6901 to 7000

Table 2.70: Main lookup table

#

ODE

Mathematica result

Maple result

6901

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y = 0 \]

6902

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (1+2 x \right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

6903

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y = 0 \]

6904

\[ {}x^{2} y^{\prime \prime }+x \left (2+x \right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

6905

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (3+8 x \right ) y^{\prime }-\left (5-49 x \right ) y = 0 \]

6906

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 x y = 0 \]

6907

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y = 0 \]

6908

\[ {}x^{2} \left (1+2 x \right ) y^{\prime \prime }+x \left (9+13 x \right ) y^{\prime }+\left (7+5 x \right ) y = 0 \]

6909

\[ {}4 x^{2} \left (1+2 x \right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y = 0 \]

6910

\[ {}3 x^{2} \left (x +3\right ) y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y = 0 \]

6911

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y = 0 \]

6912

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y = 0 \]

6913

\[ {}x^{2} \left (1+2 x \right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

6914

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

6915

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (1+4 x \right ) y^{\prime }-\left (49+27 x \right ) y = 0 \]

6916

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

6917

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

6918

\[ {}x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

6919

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

6920

\[ {}x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

6921

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

6922

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x y^{\prime }-\left (-x^{2}+35\right ) y = 0 \]

6923

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

6924

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

6925

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

6926

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

6927

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

6928

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

6929

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

6930

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

6931

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

6932

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

6933

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

6934

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

6935

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

6936

\[ {}2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y = 0 \]

6937

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \]

6938

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

6939

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

6940

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

6941

\[ {}t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \]

6942

\[ {}t y^{\prime \prime }-\left (4+t \right ) y^{\prime }+2 y = 0 \]

6943

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

6944

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

6945

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

6946

\[ {}t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \]

6947

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

6948

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \]

6949

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

6950

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

6951

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

6952

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

6953

\[ {}y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

6954

\[ {}y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

6955

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

6956

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 x y^{\prime }-16 y = 0 \]

6957

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

6958

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2+x \right ) y = 0 \]

6959

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

6960

\[ {}4 y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

6961

\[ {}y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6962

\[ {}4 x y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

6963

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

6964

\[ {}3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

6965

\[ {}2 x^{2} y^{\prime \prime }-x \left (1+2 x \right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

6966

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (1+2 x \right ) y = 0 \]

6967

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (-2 x +1\right ) y = 0 \]

6968

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

6969

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

6970

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

6971

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

6972

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y = 0 \]

6973

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

6974

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

6975

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

6976

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

6977

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

6978

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

6979

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0 \]

6980

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

6981

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

6982

\[ {}x^{2} y^{\prime \prime }+2 x \left (2+x \right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

6983

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

6984

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1+2 x \right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

6985

\[ {}x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2+x \right ) y = 0 \]

6986

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

6987

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

6988

\[ {}2 x y^{\prime \prime }+5 \left (-2 x +1\right ) y^{\prime }-5 y = 0 \]

6989

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

6990

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

6991

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

6992

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

6993

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

6994

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

6995

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

6996

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }-\frac {x y^{\prime }}{2}-\frac {3 x y}{4} = 0 \]

6997

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

6998

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

6999

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

7000

\[ {}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]