# |
ODE |
Mathematica result |
Maple result |
\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+30 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (1+2 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}3 t \left (t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (x^{2}-1\right ) y}{4} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+\left (-2+x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+2 u^{\prime }+u = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }-\left (1+2 x \right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] | ✓ | ✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] | ✓ | ✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {2 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {6 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {20 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {12 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y}{4 x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y}{x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (\frac {6}{x^{2}}-1\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (\frac {1}{x}-\frac {3}{16 x^{2}}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {y}{4 x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = 2 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-\left (-2+x \right ) y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {1}{\sqrt {\mathit {a4} \,x^{4}+\mathit {a3} \,x^{3}+\mathit {a2} \,x^{2}+\mathit {a1} x +\mathit {a0}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y-b \sin \left (c x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cos \relax (x )-{\mathrm e}^{2 x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cos \relax (x )-\frac {\sin \left (2 x \right )}{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cos \relax (x )-{\mathrm e}^{-\sin \relax (x )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \relax (x )-\sin \left (2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (\sin \left (\ln \relax (x )\right )+\cos \left (\ln \relax (x )\right )+a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f^{\prime }\relax (x ) y-f \relax (x ) f^{\prime }\relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \relax (x ) y-g \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-a x -b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}+a \,x^{m} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}+\left (x y-1\right ) f \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-x y-x +1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \] |
✓ |
✓ |
|