# |
ODE |
Mathematica result |
Maple result |
\[ {}x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-2 \left (x^{2}-a \right ) y^{\prime }+2 n x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0 \] |
✗ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2 a x \ln \relax (x )+1\right ) y^{\prime }+\left (a^{2} x \ln \relax (x )^{2}+a \ln \relax (x )+a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (f \relax (x ) x +2\right ) y^{\prime }+f \relax (x ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime \prime }-\left (x +a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime \prime }+4 y^{\prime }-\left (2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime \prime }+4 y-\left (2+x \right ) y+l y = 0 \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime \prime }+4 m y^{\prime }-\left (x -2 m -4 n \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}16 x y^{\prime \prime }+8 y^{\prime }-\left (x +a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}a x y^{\prime \prime }+b y^{\prime }+c y = 0 \] |
✓ |
✓ |
|
\[ {}a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y = 0 \] |
✓ |
✓ |
|
\[ {}5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{\frac {1}{5}} y = 0 \] |
✓ |
✓ |
|
\[ {}2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y = 0 \] |
✓ |
✓ |
|
\[ {}2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y = 0 \] |
✓ |
✓ |
|
\[ {}\left (\mathit {a2} x +\mathit {b2} \right ) y^{\prime \prime }+\left (\mathit {a1} x +\mathit {b1} \right ) y^{\prime }+\left (\mathit {a0} x +\mathit {b0} \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (-1+v \right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\frac {y}{\ln \relax (x )}-x \,{\mathrm e}^{x} \left (2+\ln \relax (x ) x \right ) = 0 \] |
✓ |
✓ | |
\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-x y = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+b a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y-a \,x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y-f \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (l \,x^{2}-v^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (a \,x^{m}+b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a x -b^{2}\right ) y = 0 \] | ✓ | ✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a \,x^{2}+b \right ) y = 0 \] | ✓ | ✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 \left (x +a \right ) y^{\prime }-b \left (b -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \relax (x )-\left (a \,x^{2}+12 a +4\right ) \cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \relax (x )} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \relax (x )} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (a^{2} x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (-v^{2}+x^{2}+1\right ) y-f \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y-5 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-x^{2} \ln \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }-\left (2 x^{3}-4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y-\sin \relax (x ) x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x +3\right ) x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (2+3 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (-1+v \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (1+2 x \right ) y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a +2 b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) b \,x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \relax (x ) y = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+\left (2 a x +b \right ) x y^{\prime }+\left (a b x +c \,x^{2}+d \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime } x +\left (\mathit {a1} \,x^{2}+\mathit {b1} x +\mathit {c1} \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+2\right ) x y^{\prime }+\left (x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (4 x^{4}+2 x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) x y^{\prime }+f \relax (x ) y = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+\left (2 n +2 a +1\right ) x^{2}+a \left (-1\right )^{n}-a^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\mathit {a1} \,x^{2 n}+\mathit {b1} \,x^{n}+\mathit {c1} \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{\mathit {a1}}+b \right ) x y^{\prime }+\left (A \,x^{2 \mathit {a1}}+B \,x^{\mathit {a1}}+C \,x^{\mathit {b1}}+\mathit {DD} \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2} \tan \relax (x )-x \right ) y^{\prime }-\left (x \tan \relax (x )+a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2} \cot \relax (x )+x \right ) y^{\prime }+\left (x \cot \relax (x )+a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x f \relax (x ) y^{\prime }+\left (f^{\prime }\relax (x ) x +f \relax (x )^{2}-f \relax (x )+a \,x^{2}+b x +c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x^{2} f \relax (x ) y^{\prime }+\left (x^{2} \left (f^{\prime }\relax (x )+f \relax (x )^{2}+a \right )-v \left (-1+v \right )\right ) y = 0 \] |
✓ |
✓ |
|