# |
ODE |
Mathematica result |
Maple result |
\[ {}4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) x^{3} y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-4 \left (3 x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{6} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x^{4}+2 x^{2}+2 x +1\right ) y^{\prime \prime \prime }-\left (2 x^{6}+3 x^{4}-6 x^{2}-6 x -1\right ) y^{\prime \prime }+\left (x^{6}-6 x^{3}-15 x^{2}-12 x -2\right ) y^{\prime }+\left (x^{4}+4 x^{3}+8 x^{2}+6 x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -a \right )^{3} \left (x -b \right )^{3} y^{\prime \prime \prime }-c y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } \sin \relax (x )+\left (2 \cos \relax (x )+1\right ) y^{\prime \prime }-y^{\prime } \sin \relax (x )-\cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (\sin \relax (x )+x \right ) y^{\prime \prime \prime }+3 \left (\cos \relax (x )+1\right ) y^{\prime \prime }-3 y^{\prime } \sin \relax (x )-y \cos \relax (x )+\sin \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } \left (\sin ^{2}\relax (x )\right )+3 y^{\prime \prime } \sin \relax (x ) \cos \relax (x )+\left (\cos \left (2 x \right )+4 \nu \left (\nu +1\right ) \left (\sin ^{2}\relax (x )\right )\right ) y^{\prime }+2 \nu \left (\nu +1\right ) y \sin \left (2 x \right ) = 0 \] |
✓ |
✓ | |
\[ {}f^{\prime }\relax (x ) y^{\prime \prime }+f \relax (x ) y^{\prime \prime \prime }+g^{\prime }\relax (x ) y^{\prime }+g \relax (x ) y^{\prime \prime }+h^{\prime }\relax (x ) y+h \relax (x ) y^{\prime }+A \relax (x ) \left (f \relax (x ) y^{\prime \prime }+g \relax (x ) y^{\prime }+h \relax (x ) y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }+x y^{\prime }+n y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-x y^{\prime }-n y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y-f = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+\left (\lambda +1\right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y = 0 \] |
✓ |
✓ | |
\[ {}y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime \prime }+\left (a \,x^{2}+b \lambda +c \right ) y^{\prime \prime }+\left (a \,x^{2}+\beta \lambda +\gamma \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime \prime }+a \WeierstrassP \left (x , \mathit {g2} , \mathit {g3}\right ) y^{\prime \prime }+b \WeierstrassPPrime \left (x , \mathit {g2} , \mathit {g3}\right ) y^{\prime }+\left (c \left (6 \WeierstrassP \left (x , \mathit {g2} , \mathit {g3}\right )^{2}-\frac {\mathit {g2}}{2}\right )+d \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime \prime }-\left (12 k^{2} \mathrm {sn}\left (z | x \right )^{2}+a \right ) y^{\prime \prime }+b y^{\prime }+\left (\alpha \mathrm {sn}\left (z | x \right )^{2}+\beta \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime \prime }+10 f y^{\prime \prime }+10 \mathit {df} y^{\prime }+\left (3 f^{2}+3 \mathit {ddf} \right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 a x y^{\prime \prime \prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a^{3} x^{3} y^{\prime }+a^{4} x^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+6 f y^{\prime \prime \prime }+\left (11 f^{2}+4 \mathit {df} +10 g \right ) y^{\prime \prime }+\left (6 f^{3}+7 \mathit {df} f +30 f g +\mathit {ddf} +10 \mathit {dg} \right ) y^{\prime }+3 \left (6 f^{2} g +2 \mathit {df} g +5 \mathit {dg} f +3 g^{2}+\mathit {ddg} \right ) y = 0 \] |
✗ |
✓ |
|
\[ {}4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-24 = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime \prime \prime }-\left (6 x^{2}+1\right ) y^{\prime \prime \prime }+12 x^{3} y^{\prime \prime }-\left (9 x^{2}-7\right ) x^{2} y^{\prime }+2 \left (x^{2}-3\right ) x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }-2 \left (\nu ^{2} x^{2}+6\right ) y^{\prime \prime }+\nu ^{2} \left (\nu ^{2} x^{2}+4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }-\lambda ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }+\left (2 n -2 \nu +4\right ) x y^{\prime \prime \prime }+\left (n -\nu +1\right ) \left (n -\nu +2\right ) y^{\prime \prime }-\frac {b^{4} y}{16} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime \prime }+2 x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime }-a^{4} x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }-2 n \left (n +1\right ) x^{2} y^{\prime \prime }+4 n \left (n +1\right ) x y^{\prime }+\left (a \,x^{4}+n \left (n +1\right ) \left (n +3\right ) \left (n -2\right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }+\left (4 n^{2}-1\right ) x y^{\prime }-4 y x^{4} = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }-\left (4 n^{2}-1\right ) x y^{\prime }+\left (-4 x^{4}+4 n^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}+3\right ) x^{2} y^{\prime \prime }+\left (12 n^{2}-3\right ) x y^{\prime }-\left (4 x^{4}+12 n^{2}-3\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a \right ) x^{3} y^{\prime \prime \prime }+\left (4 b^{2} c^{2} x^{2 c}+6 \left (a -1\right )^{2}-2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )+1\right ) x^{2} y^{\prime \prime }+\left (4 \left (3 c -2 a +1\right ) b^{2} c^{2} x^{2 c}+\left (2 a -1\right ) \left (2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )-2 a \left (a -1\right )-1\right )\right ) x y^{\prime }+\left (4 \left (-c +a \right ) \left (a -2 c \right ) b^{2} c^{2} x^{2 c}+\left (c \mu +c \nu +a \right ) \left (c \mu +c \nu -a \right ) \left (c \mu -c \nu +a \right ) \left (c \mu -c \nu -a \right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (a -1\right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 a c +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y = 0 \] |
✓ | ✓ |
|
\[ {}\nu ^{4} x^{4} y^{\prime \prime \prime \prime }+\left (4 \nu -2\right ) \nu ^{3} x^{3} y^{\prime \prime \prime }+\left (\nu -1\right ) \left (2 \nu -1\right ) \nu ^{2} x^{2} y^{\prime \prime }-\frac {b^{4} x^{\frac {2}{\nu }} y}{16} = 0 \] | ✓ | ✓ |
|
\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}\left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+y \,{\mathrm e}^{x}-\frac {1}{x^{5}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } \left (\sin ^{4}\relax (x )\right )+2 y^{\prime \prime \prime } \left (\sin ^{3}\relax (x )\right ) \cos \relax (x )+y^{\prime \prime } \left (\sin ^{2}\relax (x )\right ) \left (\sin ^{2}\relax (x )-3\right )+y^{\prime } \sin \relax (x ) \cos \relax (x ) \left (2 \left (\sin ^{2}\relax (x )\right )+3\right )+\left (a^{4} \left (\sin ^{4}\relax (x )\right )-3\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } \left (\sin ^{6}\relax (x )\right )+4 y^{\prime \prime \prime } \left (\sin ^{5}\relax (x )\right ) \cos \relax (x )-6 y^{\prime \prime } \left (\sin ^{6}\relax (x )\right )-4 y^{\prime } \left (\sin ^{5}\relax (x )\right ) \cos \relax (x )+y \left (\sin ^{6}\relax (x )\right )-f = 0 \] |
✓ |
✓ |
|
\[ {}f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \mathit {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right ) = 0 \] |
✗ |
✓ |
|
\[ {}f y^{\prime \prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y-\lambda \left (a x -b \right ) \left (y^{\prime \prime }-a^{2} y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\relax (5)}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \relax (x )-c \cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\relax (6)}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\relax (5)}-y a x -b = 0 \] |
✗ |
✗ |
|
\[ {}y^{\relax (5)}+a \,x^{\nu } y^{\prime }+a \nu \,x^{\nu -1} y = 0 \] |
✓ |
✗ |
|
\[ {}y^{\relax (5)}+a y^{\prime \prime \prime \prime }-f = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\relax (5)}-m n y^{\prime \prime \prime \prime }+y a x = 0 \] |
✓ |
✓ |
|
\[ {}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\relax (5)}-\left (a A_{1}-A_{0}\right ) x -A_{1}-\left (\left (a A_{2}-A_{1}\right ) x +A_{2}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime \prime \prime }-a y = 0 \] |
✓ |
✓ |
|
\[ {}x^{10} y^{\relax (5)}-a y = 0 \] |
✓ |
✓ |
|
\[ {}x^{\frac {5}{2}} y^{\relax (5)}-a y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -a \right )^{5} \left (x -b \right )^{5} y^{\relax (5)}-c y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{2}-x = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-6 y^{2}+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a y^{2}+b x +c = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-2 y^{3}-x y+a = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-a y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+d +b x y+c y+a y^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+d +b y^{2}+c y+a y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a \,x^{r} y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+6 a^{10} y^{11}-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{\frac {3}{2}}} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-{\mathrm e}^{y} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+{\mathrm e}^{x} \sin \relax (y) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+a \sin \relax (y) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a^{2} \sin \relax (y)-b \sin \relax (x ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+a^{2} \sin \relax (y)-f \relax (x ) b = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-\frac {h \left (\frac {y}{\sqrt {x}}\right )}{x^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }-y^{\frac {3}{2}}+12 y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {\left (3 n +4\right ) y^{\prime }}{n}-\frac {2 \left (n +1\right ) \left (n +2\right ) y \left (y^{\frac {n}{n +1}}-1\right )}{n^{2}} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+b y^{n}+\frac {\left (a^{2}-1\right ) y}{4} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+b \,x^{r} y^{n} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+f \relax (x ) \sin \relax (y) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+y y^{\prime }-y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime }-y^{3}+a y = 0 \] |
✓ |
✓ |
|