2.99 Problems 9801 to 9900

Table 2.99: Main lookup table

#

ODE

Mathematica result

Maple result

9801

\[ {}\left (a \cot \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cot \left (\mu x \right ) y-d^{2}+c d \cot \left (\mu x \right ) \]

9802

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+c \left (\sin ^{n}\left (\lambda x \right )\right ) \left (\cos ^{-n -4}\left (\lambda x \right )\right ) \]

9803

\[ {}y^{\prime } = a \sin \left (\lambda x \right ) y^{2}+b \sin \left (\lambda x \right ) \left (\cos ^{n}\left (\lambda x \right )\right ) \]

9804

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \left (\cos ^{n}\left (\lambda x \right )\right ) y-a \left (\cos ^{n -1}\left (\lambda x \right )\right ) \]

9805

\[ {}y^{\prime } = a \cos \left (\lambda x \right ) y^{2}+b \cos \left (\lambda x \right ) \left (\sin ^{n}\left (\lambda x \right )\right ) \]

9806

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \,x^{n} \cos \left (\lambda x \right ) y-a \,x^{n} \]

9807

\[ {}\left (\sin ^{n +1}\left (2 x \right )\right ) y^{\prime } = a y^{2} \left (\sin ^{2 n}\relax (x )\right )+b \left (\cos ^{2 n}\relax (x )\right ) \]

9808

\[ {}y^{\prime } = y^{2}-y \tan \relax (x )+a \left (-a +1\right ) \left (\cot ^{2}\relax (x )\right ) \]

9809

\[ {}y^{\prime } = y^{2}-m y \tan \relax (x )+b^{2} \left (\cos ^{2 m}\relax (x )\right ) \]

9810

\[ {}y^{\prime } = y^{2}+m y \cot \relax (x )+b^{2} \left (\sin ^{2 m}\relax (x )\right ) \]

9811

\[ {}y^{\prime } = y^{2}-2 \lambda ^{2} \left (\tan ^{2}\relax (x )\right )-2 \lambda ^{2} \left (\cot ^{2}\left (\lambda x \right )\right ) \]

9812

\[ {}y^{\prime } = y^{2}+a \lambda +b \lambda +2 b a +a \left (\lambda -a \right ) \left (\tan ^{2}\left (\lambda x \right )\right )+b \left (\lambda -b \right ) \left (\cot ^{2}\left (\lambda x \right )\right ) \]

9813

\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \left (\tan ^{2}\left (\lambda x \right )\right )}{4}+a \left (\cos ^{2}\left (\lambda x \right )\right ) \left (\sin ^{n}\left (\lambda x \right )\right ) \]

9814

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \sin \left (\lambda x \right ) y-a \tan \left (\lambda x \right ) \]

9815

\[ {}y^{\prime } = y^{2}+\lambda \arcsin \relax (x )^{n} y-a^{2}+a \lambda \arcsin \relax (x )^{n} \]

9816

\[ {}y^{\prime } = y^{2}+\lambda x \arcsin \relax (x )^{n} y+\arcsin \relax (x )^{n} \lambda \]

9817

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arcsin \relax (x )^{n} \left (x^{k +1} y-1\right ) \]

9818

\[ {}y^{\prime } = \lambda \arcsin \relax (x )^{n} y^{2}+a y+b a -b^{2} \lambda \arcsin \relax (x )^{n} \]

9819

\[ {}y^{\prime } = \lambda \arcsin \relax (x )^{n} y^{2}-b \lambda \,x^{m} \arcsin \relax (x )^{n} y+b m \,x^{m -1} \]

9820

\[ {}y^{\prime } = \lambda \arcsin \relax (x )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arcsin \relax (x )^{n} \]

9821

\[ {}y^{\prime } = \lambda \arcsin \relax (x )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

9822

\[ {}x y^{\prime } = \lambda \arcsin \relax (x )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \relax (x )^{n} \]

9823

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arcsin \relax (x )^{m}-n y \]

9824

\[ {}y^{\prime } = y^{2}+\lambda \arccos \relax (x )^{n} y-a^{2}+a \lambda \arccos \relax (x )^{n} \]

9825

\[ {}y^{\prime } = y^{2}+\lambda x \arccos \relax (x )^{n} y+\lambda \arccos \relax (x )^{n} \]

9826

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arccos \relax (x )^{n} \left (x^{k +1} y-1\right ) \]

9827

\[ {}y^{\prime } = \lambda \arccos \relax (x )^{n} y^{2}+a y+b a -b^{2} \lambda \arccos \relax (x )^{n} \]

9828

\[ {}y^{\prime } = \lambda \arccos \relax (x )^{n} y^{2}-b \lambda \,x^{m} \arccos \relax (x )^{n} y+b m \,x^{m -1} \]

9829

\[ {}y^{\prime } = \lambda \arccos \relax (x )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arccos \relax (x )^{n} \]

9830

\[ {}y^{\prime } = \lambda \arccos \relax (x )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

9831

\[ {}x y^{\prime } = \lambda \arccos \relax (x )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arccos \relax (x )^{n} \]

9832

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arccos \relax (x )^{m}-n y \]

9833

\[ {}y^{\prime } = y^{2}+\lambda \arctan \relax (x )^{n} y-a^{2}+a \lambda \arctan \relax (x )^{n} \]

9834

\[ {}y^{\prime } = y^{2}+\lambda x \arctan \relax (x )^{n} y+\arctan \relax (x )^{n} \lambda \]

9835

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arctan \relax (x )^{n} \left (x^{k +1} y-1\right ) \]

9836

\[ {}y^{\prime } = \lambda \arctan \relax (x )^{n} y^{2}+a y+b a -b^{2} \lambda \arctan \relax (x )^{n} \]

9837

\[ {}y^{\prime } = \lambda \arctan \relax (x )^{n} y^{2}-b \lambda \,x^{m} \arctan \relax (x )^{n} y+b m \,x^{m -1} \]

9838

\[ {}y^{\prime } = \lambda \arctan \relax (x )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arctan \relax (x )^{n} \]

9839

\[ {}y^{\prime } = \lambda \arctan \relax (x )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

9840

\[ {}x y^{\prime } = \lambda \arctan \relax (x )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arctan \relax (x )^{n} \]

9841

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arctan \relax (x )^{m}-n y \]

9842

\[ {}y^{\prime } = y^{2}+\lambda \mathrm {arccot}\relax (x )^{n} y-a^{2}+a \lambda \mathrm {arccot}\relax (x )^{n} \]

9843

\[ {}y^{\prime } = y^{2}+\lambda x \mathrm {arccot}\relax (x )^{n} y+\mathrm {arccot}\relax (x )^{n} \lambda \]

9844

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \mathrm {arccot}\relax (x )^{n} \left (x^{k +1} y-1\right ) \]

9845

\[ {}y^{\prime } = \lambda \mathrm {arccot}\relax (x )^{n} y^{2}+a y+b a -b^{2} \lambda \mathrm {arccot}\relax (x )^{n} \]

9846

\[ {}y^{\prime } = \lambda \mathrm {arccot}\relax (x )^{n} y^{2}-b \lambda \,x^{m} \mathrm {arccot}\relax (x )^{n} y+b m \,x^{m -1} \]

9847

\[ {}y^{\prime } = \lambda \mathrm {arccot}\relax (x )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \mathrm {arccot}\relax (x )^{n} \]

9848

\[ {}y^{\prime } = \lambda \mathrm {arccot}\relax (x )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

9849

\[ {}x y^{\prime } = \lambda \mathrm {arccot}\relax (x )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \mathrm {arccot}\relax (x )^{n} \]

9850

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \mathrm {arccot}\relax (x )^{m}-n y \]

9851

\[ {}y^{\prime } = y^{2}+f \relax (x ) y-a^{2}-a f \relax (x ) \]

9852

\[ {}y^{\prime } = y^{2} f \relax (x )-a y-b a -b^{2} f \relax (x ) \]

9853

\[ {}y^{\prime } = y^{2}+x f \relax (x ) y+f \relax (x ) \]

9854

\[ {}y^{\prime } = y^{2} f \relax (x )-a \,x^{n} f \relax (x ) y+a n \,x^{n -1} \]

9855

\[ {}y^{\prime } = y^{2} f \relax (x )+a n \,x^{n -1}-a^{2} x^{2 n} f \relax (x ) \]

9856

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \relax (x ) y-f \relax (x ) \]

9857

\[ {}x y^{\prime } = y^{2} f \relax (x )+n y+a \,x^{2 n} f \relax (x ) \]

9858

\[ {}x y^{\prime } = x^{2 n} f \relax (x ) y^{2}+\left (a \,x^{n} f \relax (x )-n \right ) y+f \relax (x ) b \]

9859

\[ {}y^{\prime } = y^{2} f \relax (x )+g \relax (x ) y-a^{2} f \relax (x )-a g \relax (x ) \]

9860

\[ {}y^{\prime } = y^{2} f \relax (x )+g \relax (x ) y+a n \,x^{n -1}-a \,x^{n} g \relax (x )-a^{2} x^{2 n} f \relax (x ) \]

9861

\[ {}y^{\prime } = y^{2} f \relax (x )-a \,x^{n} g \relax (x ) y+a n \,x^{n -1}+a^{2} x^{2 n} \left (g \relax (x )-f \relax (x )\right ) \]

9862

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\lambda x} f \relax (x ) y+\lambda f \relax (x ) \]

9863

\[ {}y^{\prime } = y^{2} f \relax (x )-a \,{\mathrm e}^{\lambda x} f \relax (x ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

9864

\[ {}y^{\prime } = y^{2} f \relax (x )+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} f \relax (x ) \]

9865

\[ {}y^{\prime } = y^{2} f \relax (x )+\lambda y+a^{2} {\mathrm e}^{2 \lambda x} f \relax (x ) \]

9866

\[ {}y^{\prime } = y^{2} f \relax (x )-f \relax (x ) \left ({\mathrm e}^{\lambda x} a +b \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

9867

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} f \relax (x ) y^{2}+\left (a f \relax (x )-\lambda \right ) y+b \,{\mathrm e}^{-\lambda x} f \relax (x ) \]

9868

\[ {}y^{\prime } = y^{2} f \relax (x )+g \relax (x ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \relax (x )-a^{2} {\mathrm e}^{2 \lambda x} f \relax (x ) \]

9869

\[ {}y^{\prime } = y^{2} f \relax (x )-a \,{\mathrm e}^{\lambda x} g \relax (x ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \relax (x )-f \relax (x )\right ) \]

9870

\[ {}y^{\prime } = y^{2} f \relax (x )+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} f \relax (x ) {\mathrm e}^{2 \lambda \,x^{2}} \]

9871

\[ {}y^{\prime } = y^{2} f \relax (x )+\lambda x y+a f \relax (x ) {\mathrm e}^{\lambda x} \]

9872

\[ {}y^{\prime } = y^{2} f \relax (x )-a \left (\tanh ^{2}\left (\lambda x \right )\right ) \left (a f \relax (x )+\lambda \right )+a \lambda \]

9873

\[ {}y^{\prime } = y^{2} f \relax (x )-a \left (\coth ^{2}\left (\lambda x \right )\right ) \left (a f \relax (x )+\lambda \right )+a \lambda \]

9874

\[ {}y^{\prime } = y^{2} f \relax (x )-a^{2} f \relax (x )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \relax (x ) \left (\sinh ^{2}\left (\lambda x \right )\right ) \]

9875

\[ {}x y^{\prime } = y^{2} f \relax (x )+a -a^{2} f \relax (x ) \ln \relax (x )^{2} \]

9876

\[ {}x y^{\prime } = f \relax (x ) \left (y+a \ln \relax (x )\right )^{2}-a \]

9877

\[ {}y^{\prime } = y^{2} f \relax (x )-a x \ln \relax (x ) f \relax (x ) y+a \ln \relax (x )+a \]

9878

\[ {}y^{\prime } = -a \ln \relax (x ) y^{2}+a f \relax (x ) \left (\ln \relax (x ) x -x \right ) y-f \relax (x ) \]

9879

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+f \relax (x ) \cos \left (\lambda x \right ) y-f \relax (x ) \]

9880

\[ {}y^{\prime } = y^{2} f \relax (x )-a^{2} f \relax (x )+a \lambda \sin \left (\lambda x \right )+a^{2} f \relax (x ) \left (\sin ^{2}\left (\lambda x \right )\right ) \]

9881

\[ {}y^{\prime } = y^{2} f \relax (x )-a^{2} f \relax (x )+a \lambda \cos \left (\lambda x \right )+a^{2} f \relax (x ) \left (\cos ^{2}\left (\lambda x \right )\right ) \]

9882

\[ {}y^{\prime } = y^{2} f \relax (x )-a \left (\tan ^{2}\left (\lambda x \right )\right ) \left (a f \relax (x )-\lambda \right )+a \lambda \]

9883

\[ {}y^{\prime } = y^{2} f \relax (x )-a \left (\cot ^{2}\left (\lambda x \right )\right ) \left (a f \relax (x )-\lambda \right )+a \lambda \]

9884

\[ {}y^{\prime } = y^{2}-f \relax (x )^{2}+f^{\prime }\relax (x ) \]

9885

\[ {}y^{\prime } = y^{2} f \relax (x )-f \relax (x ) g \relax (x ) y+g^{\prime }\relax (x ) \]

9886

\[ {}y^{\prime } = -f^{\prime }\relax (x ) y^{2}+f \relax (x ) g \relax (x ) y-g \relax (x ) \]

9887

\[ {}y^{\prime } = g \relax (x ) \left (y-f \relax (x )\right )^{2}+f^{\prime }\relax (x ) \]

9888

\[ {}y^{\prime } = \frac {f^{\prime }\relax (x ) y^{2}}{g \relax (x )}-\frac {g^{\prime }\relax (x )}{f \relax (x )} \]

9889

\[ {}f \relax (x )^{2} y^{\prime }-f^{\prime }\relax (x ) y^{2}+g \relax (x ) \left (y-f \relax (x )\right ) = 0 \]

9890

\[ {}y^{\prime } = f^{\prime }\relax (x ) y^{2}+a \,{\mathrm e}^{\lambda x} f \relax (x ) y+{\mathrm e}^{\lambda x} a \]

9891

\[ {}y^{\prime } = y^{2} f \relax (x )+g^{\prime }\relax (x ) y+a f \relax (x ) {\mathrm e}^{2 g \relax (x )} \]

9892

\[ {}y^{\prime } = y^{2}-\frac {f^{\prime \prime }\relax (x )}{f \relax (x )} \]

9893

\[ {}y^{\prime } = y^{2}+a^{2} f \left (a x +b \right ) \]

9894

\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \]

9895

\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {a x +b}{c x +d}\right )}{\left (c x +d \right )^{4}} \]

9896

\[ {}x^{2} y^{\prime } = x^{4} f \relax (x ) y^{2}+1 \]

9897

\[ {}x^{2} y^{\prime } = x^{4} y^{2}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \]

9898

\[ {}y^{\prime } = y^{2} f \relax (x )+g \relax (x ) y+h \relax (x ) \]

9899

\[ {}y^{\prime } = y^{2}+{\mathrm e}^{2 \lambda x} f \left ({\mathrm e}^{\lambda x}\right )-\frac {\lambda ^{2}}{4} \]

9900

\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{4}+\frac {{\mathrm e}^{2 \lambda x} f \left (\frac {{\mathrm e}^{\lambda x} a +b}{c \,{\mathrm e}^{\lambda x}+d}\right )}{\left (c \,{\mathrm e}^{\lambda x}+d \right )^{4}} \]