7.219 problem 1810 (book 6.219)

Internal problem ID [9384]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 6, non-linear second order
Problem number: 1810 (book 6.219).
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [NONE]

\[ \boxed {\left (c +2 b x +a \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }+y d=0} \]

Solution by Maple

Time used: 0.156 (sec). Leaf size: 382

dsolve((c+2*b*x+a*x^2+y(x)^2)^2*diff(diff(y(x),x),x)+d*y(x)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) = \operatorname {RootOf}\left (-a \arctan \left (\frac {a x +b}{\sqrt {a c -b^{2}}}\right )+\left (\int _{}^{\textit {\_Z}}\frac {\sqrt {-\textit {\_f}^{6} a c +\textit {\_f}^{6} b^{2}+c_{1} \textit {\_f}^{4} a^{2}-2 \textit {\_f}^{4} a c +2 \textit {\_f}^{4} b^{2}+2 c_{1} \textit {\_f}^{2} a^{2}-a c \,\textit {\_f}^{2}+\textit {\_f}^{2} b^{2}+c_{1} a^{2}+\textit {\_f}^{2} d +d}\, a}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-a c \,\textit {\_f}^{2}+\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d}d \textit {\_f} \right ) \sqrt {a c -b^{2}}+c_{2} \sqrt {a c -b^{2}}\right ) \sqrt {a \,x^{2}+2 x b +c} \\ y \left (x \right ) = \operatorname {RootOf}\left (-a \arctan \left (\frac {a x +b}{\sqrt {a c -b^{2}}}\right )-\left (\int _{}^{\textit {\_Z}}\frac {\sqrt {-\textit {\_f}^{6} a c +\textit {\_f}^{6} b^{2}+c_{1} \textit {\_f}^{4} a^{2}-2 \textit {\_f}^{4} a c +2 \textit {\_f}^{4} b^{2}+2 c_{1} \textit {\_f}^{2} a^{2}-a c \,\textit {\_f}^{2}+\textit {\_f}^{2} b^{2}+c_{1} a^{2}+\textit {\_f}^{2} d +d}\, a}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_{1} \textit {\_f}^{2} a^{2}-a c \,\textit {\_f}^{2}+\textit {\_f}^{2} b^{2}+c_{1} a^{2}+d}d \textit {\_f} \right ) \sqrt {a c -b^{2}}+c_{2} \sqrt {a c -b^{2}}\right ) \sqrt {a \,x^{2}+2 x b +c} \\ \end{align*}

Solution by Mathematica

Time used: 23.69 (sec). Leaf size: 260

DSolve[d*y[x] + (c + 2*b*x + a*x^2 + y[x]^2)^2*y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} \text {Solve}\left [a \arctan \left (\frac {a x+b}{\sqrt {a c-b^2}}\right )+\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {c+x (2 b+a x)}}}\frac {a \left (K[2]^2+1\right )}{\sqrt {\left (K[2]^2+1\right ) \left (d+\left (K[2]^2+1\right ) \left (c_1 a^2+\left (b^2-a c\right ) K[2]^2\right )\right )}}dK[2]=c_2 \sqrt {a c-b^2},y(x)\right ] \\ \text {Solve}\left [a \arctan \left (\frac {a x+b}{\sqrt {a c-b^2}}\right )-\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {c+x (2 b+a x)}}}\frac {a \left (K[3]^2+1\right )}{\sqrt {\left (K[3]^2+1\right ) \left (d+\left (K[3]^2+1\right ) \left (c_1 a^2+\left (b^2-a c\right ) K[3]^2\right )\right )}}dK[3]=c_2 \sqrt {a c-b^2},y(x)\right ] \\ \end{align*}