10.4 problem 1916

Internal problem ID [9491]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 9, system of higher order odes
Problem number: 1916.
ODE order: 1.
ODE degree: 1.

Solve \begin {align*} x^{\prime }\left (t \right )&=h \left (a -x \left (t \right )\right ) \left (c -x \left (t \right )-y \left (t \right )\right )\\ y^{\prime }\left (t \right )&=k \left (b -y \left (t \right )\right ) \left (c -x \left (t \right )-y \left (t \right )\right ) \end {align*}

Solution by Maple

Time used: 0.953 (sec). Leaf size: 237

dsolve([diff(x(t),t)=h*(a-x(t))*(c-x(t)-y(t)),diff(y(t),t)=k*(b-y(t))*(c-x(t)-y(t))],[x(t), y(t)], singsol=all)
 

\begin{align*} \{y \left (t \right ) = b\} \\ \left \{x \left (t \right ) = -\frac {b \,{\mathrm e}^{a c_{1} h +a h t +b c_{1} h +b h t -c c_{1} h -c h t}-c \,{\mathrm e}^{a c_{1} h +a h t +b c_{1} h +b h t -c c_{1} h -c h t}+a}{-1+{\mathrm e}^{a c_{1} h +a h t +b c_{1} h +b h t -c c_{1} h -c h t}}\right \} \\ \end{align*} \begin{align*} \left \{y \left (t \right ) = \operatorname {RootOf}\left (-\left (\int _{}^{\textit {\_Z}}\frac {\left (\textit {\_a} -b \right )^{-\frac {h}{k}}}{\left (k \left (\textit {\_a} -b \right )^{-\frac {h}{k}} \textit {\_a} +k \left (\textit {\_a} -b \right )^{-\frac {h}{k}} a -k \left (\textit {\_a} -b \right )^{-\frac {h}{k}} c +c_{1} \right ) \left (\textit {\_a} -b \right )}d \textit {\_a} \right )+t +c_{2} \right )\right \} \\ \left \{x \left (t \right ) = \frac {-y \left (t \right )^{2} k +y \left (t \right ) b k +y \left (t \right ) c k -b c k +\frac {d}{d t}y \left (t \right )}{-b k +y \left (t \right ) k}\right \} \\ \end{align*}

Solution by Mathematica

Time used: 0.503 (sec). Leaf size: 277

DSolve[{x'[t]==h*(a-x[t])*(c-x[t]-y[t]),y'[t]==k*(b-y[t])*(c-x[t]-y[t])},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 

\begin{align*} y(t)\to b+c_1 \left (h \left (a-\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {(h (a-K[1]))^{\frac {k}{h}}}{(a-K[1]) \left (c_1 (a h-h K[1])^{\frac {k}{h}} (h (a-K[1]))^{\frac {k}{h}}-c (h (a-K[1]))^{\frac {k}{h}}+K[1] (h (a-K[1]))^{\frac {k}{h}}+b (a h-h K[1])^{\frac {k}{h}}\right )}dK[1]\&\right ][-h t+c_2]\right )\right ){}^{\frac {k}{h}} \\ x(t)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {(h (a-K[1]))^{\frac {k}{h}}}{(a-K[1]) \left (c_1 (a h-h K[1])^{\frac {k}{h}} (h (a-K[1]))^{\frac {k}{h}}-c (h (a-K[1]))^{\frac {k}{h}}+K[1] (h (a-K[1]))^{\frac {k}{h}}+b (a h-h K[1])^{\frac {k}{h}}\right )}dK[1]\&\right ][-h t+c_2] \\ \end{align*}