2.417 problem 993

Internal problem ID [8571]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 993.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

\[ \boxed {y^{\prime }+F \left (x \right ) \left (-y^{2}-2 \ln \left (x \right ) y-\ln \left (x \right )^{2}\right )-\frac {y}{\ln \left (x \right ) x}=0} \]

Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve(diff(y(x),x) = -F(x)*(-y(x)^2-2*y(x)*ln(x)-ln(x)^2)+1/ln(x)/x*y(x),y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {\ln \left (x \right ) \left (\int -2 \ln \left (x \right ) F \left (x \right )d x -c_{1} -2\right )}{\int -2 \ln \left (x \right ) F \left (x \right )d x -c_{1}} \]

Solution by Mathematica

Time used: 2.944 (sec). Leaf size: 75

DSolve[y'[x] == y[x]/(x*Log[x]) - F[x]*(-Log[x]^2 - 2*Log[x]*y[x] - y[x]^2),y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {\int _1^x\frac {F(K[5])}{\sqrt {\frac {1}{\log ^2(K[5])}}}dK[5]-1+c_1}{\sqrt {\frac {1}{\log ^2(x)}} \left (\int _1^x\frac {F(K[5])}{\sqrt {\frac {1}{\log ^2(K[5])}}}dK[5]+c_1\right )} \\ y(x)\to \frac {1}{\sqrt {\frac {1}{\log ^2(x)}}} \\ \end{align*}