6.24 problem 170

Internal problem ID [2917]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 170.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

\[ \boxed {y^{\prime } x -k -x^{n} a -y b -c y^{2}=0} \]

Solution by Maple

Time used: 0.0 (sec). Leaf size: 260

dsolve(x*diff(y(x),x) = k+a*x^n+b*y(x)+c*y(x)^2,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {\left (-\sqrt {b^{2}-4 c k}\, c_{1} -c_{1} b \right ) \operatorname {BesselY}\left (\frac {\sqrt {b^{2}-4 c k}}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )+2 x^{\frac {n}{2}} \operatorname {BesselY}\left (\frac {\sqrt {b^{2}-4 c k}+n}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) \sqrt {a c}\, c_{1} +\left (-\sqrt {b^{2}-4 c k}-b \right ) \operatorname {BesselJ}\left (\frac {\sqrt {b^{2}-4 c k}}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )+2 \operatorname {BesselJ}\left (\frac {\sqrt {b^{2}-4 c k}+n}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) \sqrt {a c}\, x^{\frac {n}{2}}}{2 c \left (\operatorname {BesselY}\left (\frac {\sqrt {b^{2}-4 c k}}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {b^{2}-4 c k}}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right )} \]

Solution by Mathematica

Time used: 0.63 (sec). Leaf size: 602

DSolve[x y'[x]==k +a x^n+b y[x]+c y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {-b \sqrt {x^n} \operatorname {Gamma}\left (\frac {n+\sqrt {b^2-4 c k}}{n}\right ) \operatorname {BesselJ}\left (\frac {\sqrt {b^2-4 c k}}{n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^n}}{n}\right )+\sqrt {a} \sqrt {c} x^n \left (\operatorname {Gamma}\left (\frac {n+\sqrt {b^2-4 c k}}{n}\right ) \left (\operatorname {BesselJ}\left (\frac {n+\sqrt {b^2-4 c k}}{n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^n}}{n}\right )-\operatorname {BesselJ}\left (\frac {\sqrt {b^2-4 c k}}{n}-1,\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^n}}{n}\right )\right )+c_1 \operatorname {Gamma}\left (1-\frac {\sqrt {b^2-4 c k}}{n}\right ) \left (\operatorname {BesselJ}\left (1-\frac {\sqrt {b^2-4 c k}}{n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^n}}{n}\right )-\operatorname {BesselJ}\left (-\frac {n+\sqrt {b^2-4 c k}}{n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^n}}{n}\right )\right )\right )-b c_1 \sqrt {x^n} \operatorname {Gamma}\left (1-\frac {\sqrt {b^2-4 c k}}{n}\right ) \operatorname {BesselJ}\left (-\frac {\sqrt {b^2-4 c k}}{n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^n}}{n}\right )}{2 \sqrt {x^n} \left (c \operatorname {Gamma}\left (\frac {n+\sqrt {b^2-4 c k}}{n}\right ) \operatorname {BesselJ}\left (\frac {\sqrt {b^2-4 c k}}{n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^n}}{n}\right )+c c_1 \operatorname {Gamma}\left (1-\frac {\sqrt {b^2-4 c k}}{n}\right ) \operatorname {BesselJ}\left (-\frac {\sqrt {b^2-4 c k}}{n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^n}}{n}\right )\right )} \\ y(x)\to -\frac {\frac {2 n \, _0\tilde {F}_1\left (;-\frac {\sqrt {b^2-4 c k}}{n};-\frac {a c x^n}{n^2}\right )}{\, _0\tilde {F}_1\left (;1-\frac {\sqrt {b^2-4 c k}}{n};-\frac {a c x^n}{n^2}\right )}+\sqrt {b^2-4 c k}+b}{2 c} \\ \end{align*}