1.49 problem 49

Internal problem ID [6681]

Book: Second order enumerated odes
Section: section 1
Problem number: 49.
ODE order: 2.
ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\[ \boxed {y^{3} {y^{\prime \prime }}^{2}+y y^{\prime }=0} \]

Solution by Maple

Time used: 0.063 (sec). Leaf size: 205

dsolve(y(x)^3*diff(y(x),x$2)^2+y(x)*diff(y(x),x)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) = c_{1} \\ y \left (x \right ) = 0 \\ \int _{}^{y \left (x \right )}-\frac {4}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{\frac {2}{3}}}d \textit {\_a} -x -c_{2} = 0 \\ \int _{}^{y \left (x \right )}-\frac {4}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{\frac {2}{3}}}d \textit {\_a} -x -c_{2} = 0 \\ \int _{}^{y \left (x \right )}-\frac {16}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{\frac {2}{3}} \left (1+i \sqrt {3}\right )^{2}}d \textit {\_a} -x -c_{2} = 0 \\ \int _{}^{y \left (x \right )}-\frac {16}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{\frac {2}{3}} \left (i \sqrt {3}-1\right )^{2}}d \textit {\_a} -x -c_{2} = 0 \\ \int _{}^{y \left (x \right )}-\frac {16}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{\frac {2}{3}} \left (1+i \sqrt {3}\right )^{2}}d \textit {\_a} -x -c_{2} = 0 \\ \int _{}^{y \left (x \right )}-\frac {16}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{\frac {2}{3}} \left (i \sqrt {3}-1\right )^{2}}d \textit {\_a} -x -c_{2} = 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.378 (sec). Leaf size: 150

DSolve[y[x]^3*y''[x]^2+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to 0 \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \\ \end{align*}