2.55 problem 55

Internal problem ID [9638]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 55.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Riccati]

\[ \boxed {\left (x^{2}-1\right ) y^{\prime }+\lambda \left (y^{2}-2 x y+1\right )=0} \]

Solution by Maple

Time used: 0.016 (sec). Leaf size: 231

dsolve((x^2-1)*diff(y(x),x)+lambda*(y(x)^2-2*x*y(x)+1)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {8 c_{1} \left (\left (\lambda -\frac {1}{2}\right ) x -\frac {\lambda }{2}+\frac {1}{2}\right ) \left (x +1\right ) \operatorname {HeunC}\left (0, -2 \lambda +1, 0, 0, \lambda ^{2}-\lambda +\frac {1}{2}, \frac {2}{x +1}\right )-\lambda \left (-\frac {x}{2}-\frac {1}{2}\right )^{-2 \lambda +1} \left (x +1\right ) \operatorname {HeunC}\left (0, 2 \lambda -1, 0, 0, \lambda ^{2}-\lambda +\frac {1}{2}, \frac {2}{x +1}\right )-8 \left (x -1\right ) \left (\operatorname {HeunCPrime}\left (0, -2 \lambda +1, 0, 0, \lambda ^{2}-\lambda +\frac {1}{2}, \frac {2}{x +1}\right ) c_{1} -\frac {\left (-\frac {x}{2}-\frac {1}{2}\right )^{-2 \lambda +1} \operatorname {HeunCPrime}\left (0, 2 \lambda -1, 0, 0, \lambda ^{2}-\lambda +\frac {1}{2}, \frac {2}{x +1}\right )}{4}\right )}{4 \lambda \left (\operatorname {HeunC}\left (0, -2 \lambda +1, 0, 0, \lambda ^{2}-\lambda +\frac {1}{2}, \frac {2}{x +1}\right ) c_{1} -\frac {\left (-\frac {x}{2}-\frac {1}{2}\right )^{-2 \lambda +1} \operatorname {HeunC}\left (0, 2 \lambda -1, 0, 0, \lambda ^{2}-\lambda +\frac {1}{2}, \frac {2}{x +1}\right )}{4}\right ) \left (x +1\right )} \]

Solution by Mathematica

Time used: 0.387 (sec). Leaf size: 47

DSolve[(x^2-1)*y'[x]+\[Lambda]*(y[x]^2-2*x*y[x]+1)==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {\operatorname {LegendreQ}(\lambda ,x)+c_1 \operatorname {LegendreP}(\lambda ,x)}{\operatorname {LegendreQ}(\lambda -1,x)+c_1 \operatorname {LegendreP}(\lambda -1,x)} \\ y(x)\to \frac {\operatorname {LegendreP}(\lambda ,x)}{\operatorname {LegendreP}(\lambda -1,x)} \\ \end{align*}