22.15 problem 15

Internal problem ID [2378]

Book: Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section: Exercise 40, page 186
Problem number: 15.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [NONE]

\[ \boxed {y^{\prime \prime }-\sin \left (y x \right )=0} \] With initial conditions \begin {align*} \left [y \left (\frac {\pi }{2}\right ) = 1, y^{\prime }\left (\frac {\pi }{2}\right ) = 1\right ] \end {align*}

With the expansion point for the power series method at \(x = \frac {\pi }{2}\).

Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

Order:=5; 
dsolve([diff(y(x),x$2)=sin(x*y(x)),y(1/2*Pi) = 1, D(y)(1/2*Pi) = 1],y(x),type='series',x=Pi/2);
 

\[ y \left (x \right ) = 1+\left (x -\frac {\pi }{2}\right )+\frac {1}{2} \left (x -\frac {\pi }{2}\right )^{2}-\frac {1}{96} \left (2+\pi \right )^{2} \left (x -\frac {\pi }{2}\right )^{4}+\operatorname {O}\left (\left (x -\frac {\pi }{2}\right )^{5}\right ) \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

AsymptoticDSolveValue[{y''[x]==Sin[x*y[x]],{y[Pi/2]==1,y'[Pi/2]==1}},y[x],{x,Pi/2,4}]
 

Not solved