7.64 problem 1655 (book 6.64)

Internal problem ID [9986]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 6, non-linear second order
Problem number: 1655 (book 6.64).
ODE order: 2.
ODE degree: 2.

CAS Maple gives this as type [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\[ \boxed {y^{\prime \prime }-2 a x \left ({y^{\prime }}^{2}+1\right )^{\frac {3}{2}}=0} \]

Solution by Maple

Time used: 1.046 (sec). Leaf size: 67

dsolve(diff(diff(y(x),x),x)-2*a*x*(diff(y(x),x)^2+1)^(3/2)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) = -i x +c_{1} y \left (x \right ) = i x +c_{1} y \left (x \right ) = \int \sqrt {-\frac {1}{a^{2} x^{4}+4 c_{1} a^{2} x^{2}+4 c_{1}^{2} a^{2}-1}}\, a \left (x^{2}+2 c_{1} \right )d x +c_{2} \end{align*}

Solution by Mathematica

Time used: 60.462 (sec). Leaf size: 308

DSolve[-2*a*x*(1 + y'[x]^2)^(3/2) + y''[x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to c_2-\frac {\sqrt {\frac {a x^2-1+c_1}{-1+c_1}} \sqrt {\frac {a x^2+1+c_1}{1+c_1}} \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (x \sqrt {\frac {a}{c_1+1}}\right ),\frac {c_1+1}{c_1-1}\right )+(-1+c_1) E\left (i \text {arcsinh}\left (x \sqrt {\frac {a}{c_1+1}}\right )|\frac {c_1+1}{c_1-1}\right )\right )}{\sqrt {\frac {a}{1+c_1}} \sqrt {a^2 x^4+2 a c_1 x^2-1+c_1{}^2}} y(x)\to \frac {\sqrt {\frac {a x^2-1+c_1}{-1+c_1}} \sqrt {\frac {a x^2+1+c_1}{1+c_1}} \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (x \sqrt {\frac {a}{c_1+1}}\right ),\frac {c_1+1}{c_1-1}\right )+(-1+c_1) E\left (i \text {arcsinh}\left (x \sqrt {\frac {a}{c_1+1}}\right )|\frac {c_1+1}{c_1-1}\right )\right )}{\sqrt {\frac {a}{1+c_1}} \sqrt {a^2 x^4+2 a c_1 x^2-1+c_1{}^2}}+c_2 \end{align*}