1.561 problem 563

Internal problem ID [8898]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 563.
ODE order: 1.
ODE degree: 0.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

\[ \boxed {\ln \left (y^{\prime }\right )+y^{\prime } x +a y=-b} \]

Solution by Maple

Time used: 0.14 (sec). Leaf size: 66

dsolve(ln(diff(y(x),x))+x*diff(y(x),x)+a*y(x)+b=0,y(x), singsol=all)
 

\[ -\left ({\mathrm e}^{-a y \left (x \right )-\operatorname {LambertW}\left (x \,{\mathrm e}^{-a y \left (x \right )-b}\right )-b}\right )^{-\frac {1}{a +1}} c_{1} +x -\frac {{\mathrm e}^{a y \left (x \right )+\operatorname {LambertW}\left (x \,{\mathrm e}^{-a y \left (x \right )-b}\right )+b}}{a} = 0 \]

Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 59

DSolve[b + Log[y'[x]] + a*y[x] + x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [a \left (\frac {(a+1) \log \left (1-a W\left (x e^{-a y(x)-b}\right )\right )}{a^2}+\frac {W\left (x e^{-a y(x)-b}\right )}{a}\right )+a y(x)=c_1,y(x)\right ] \]