2.402 problem 978

Internal problem ID [9313]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 978.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, `class D`], _rational, _Abel]

\[ \boxed {y^{\prime }-\frac {y \left (y^{2}+y x +x^{2}+x \right )}{x^{2}}=0} \]

Solution by Maple

Time used: 0.297 (sec). Leaf size: 71

dsolve(diff(y(x),x) = y(x)/x^2*(y(x)^2+x*y(x)+x^2+x),y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {x}{2}+\frac {\sqrt {3}\, x \tan \left (\operatorname {RootOf}\left (-\sqrt {3}\, \ln \left (\frac {4}{3 \left (\tan \left (\textit {\_Z} \right )^{2}+1\right )}\right )-2 \sqrt {3}\, \ln \left (-\frac {\sqrt {3}}{6}+\frac {\tan \left (\textit {\_Z} \right )}{2}\right )-\sqrt {3}\, \ln \left (3\right )+2 \sqrt {3}\, c_{1} +2 \sqrt {3}\, x +2 \textit {\_Z} \right )\right )}{2} \]

Solution by Mathematica

Time used: 0.141 (sec). Leaf size: 60

DSolve[y'[x] == (y[x]*(x + x^2 + x*y[x] + y[x]^2))/x^2,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [-\frac {\arctan \left (\frac {\frac {2 y(x)}{x}+1}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+\frac {y(x)}{x}+1\right )+\log \left (\frac {y(x)}{x}\right )=x+c_1,y(x)\right ] \]