5.10 problem 10

Internal problem ID [5831]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 10.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

\[ \boxed {\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4}=-\frac {x^{2}}{2}+\frac {1}{2}} \]

Solution by Maple

Time used: 0.0 (sec). Leaf size: 37

dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+1/4*y(x)=1/2*(1-x^2),y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{2}}{\sqrt {x +\sqrt {x^{2}-1}}}+\sqrt {x +\sqrt {x^{2}-1}}\, c_{1} +\frac {2 x^{2}}{15}+\frac {14}{15} \]

Solution by Mathematica

Time used: 19.346 (sec). Leaf size: 307

DSolve[(1-x^2)*y''[x]-x*y'[x]+1/4*y[x]==1/2*(1-x^2),y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \cosh \left (\frac {\sqrt {1-x^2} \arctan \left (\frac {\sqrt {1-x^2}}{x+1}\right )}{\sqrt {x^2-1}}\right ) \int _1^x\sqrt {K[1]^2-1} \sinh \left (\frac {\arctan \left (\frac {\sqrt {1-K[1]^2}}{K[1]+1}\right ) \sqrt {1-K[1]^2}}{\sqrt {K[1]^2-1}}\right )dK[1]-i \sinh \left (\frac {\sqrt {1-x^2} \arctan \left (\frac {\sqrt {1-x^2}}{x+1}\right )}{\sqrt {x^2-1}}\right ) \int _1^x-i \cosh \left (\frac {\arctan \left (\frac {\sqrt {1-K[2]^2}}{K[2]+1}\right ) \sqrt {1-K[2]^2}}{\sqrt {K[2]^2-1}}\right ) \sqrt {K[2]^2-1}dK[2]+c_1 \cosh \left (\frac {\sqrt {1-x^2} \arctan \left (\frac {\sqrt {1-x^2}}{x+1}\right )}{\sqrt {x^2-1}}\right )-i c_2 \sinh \left (\frac {\sqrt {1-x^2} \arctan \left (\frac {\sqrt {1-x^2}}{x+1}\right )}{\sqrt {x^2-1}}\right ) \]