4.64 problem 61

Internal problem ID [7285]

Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 61.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

\[ \boxed {\frac {x y^{\prime \prime }}{1-x}+y=\frac {1}{1-x}} \]

Solution by Maple

Time used: 0.047 (sec). Leaf size: 155

dsolve(x/(1-x)*diff(y(x),x$2)+y(x)=1/(1-x),y(x), singsol=all)
 

\[ y \left (x \right ) = \left (\operatorname {BesselI}\left (0, -x \right )+\operatorname {BesselI}\left (1, -x \right )\right ) x c_{2} +x \left (-\operatorname {BesselK}\left (0, -x \right )+\operatorname {BesselK}\left (1, -x \right )\right ) c_{1} -x \left (\left (\operatorname {BesselI}\left (0, -x \right )+\operatorname {BesselI}\left (1, -x \right )\right ) \left (\int \frac {-\operatorname {BesselK}\left (0, -x \right )+\operatorname {BesselK}\left (1, -x \right )}{\operatorname {BesselK}\left (1, -x \right ) \operatorname {BesselI}\left (0, x\right ) x^{2}-\operatorname {BesselK}\left (0, -x \right ) \operatorname {BesselI}\left (1, x\right ) x^{2}+x +1}d x \right )+\left (\int \frac {\operatorname {BesselI}\left (0, -x \right )+\operatorname {BesselI}\left (1, -x \right )}{\operatorname {BesselK}\left (1, -x \right ) \operatorname {BesselI}\left (0, x\right ) x^{2}-\operatorname {BesselK}\left (0, -x \right ) \operatorname {BesselI}\left (1, x\right ) x^{2}+x +1}d x \right ) \left (\operatorname {BesselK}\left (0, -x \right )-\operatorname {BesselK}\left (1, -x \right )\right )\right ) \]

Solution by Mathematica

Time used: 0.266 (sec). Leaf size: 136

DSolve[x/(1-x)*y''[x]+y[x]==1/(1-x),y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to e^{-x} x \left (e^x (\operatorname {BesselI}(0,x)-\operatorname {BesselI}(1,x)) \int _1^x2 e^{-K[1]} \sqrt {\pi } \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 K[1]\right )dK[1]-2 \sqrt {\pi } x \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 x\right ) \, _1F_2\left (\frac {1}{2};1,\frac {3}{2};\frac {x^2}{4}\right )+2 \sqrt {\pi } \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 x\right ) \operatorname {BesselI}(0,x)+c_1 \operatorname {HypergeometricU}\left (\frac {1}{2},2,2 x\right )+c_2 e^x \operatorname {BesselI}(0,x)-c_2 e^x \operatorname {BesselI}(1,x)\right ) \]