2.3 problem 3

Internal problem ID [7139]

Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 3.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

\[ \boxed {y^{\prime \prime }-y^{\prime } x -y x=3 x} \]

Solution by Maple

Time used: 0.0 (sec). Leaf size: 55

dsolve(diff(y(x),x$2)-x*diff(y(x),x)-x*y(x)-3*x=0,y(x), singsol=all)
 

\[ y \left (x \right ) = {\mathrm e}^{-x} \left (x +2\right ) c_{2} +\left (i \operatorname {erf}\left (\frac {i \sqrt {2}\, \left (x +2\right )}{2}\right ) \sqrt {\pi }\, \sqrt {2}\, \left (x +2\right ) {\mathrm e}^{-x -2}+2 \,{\mathrm e}^{\frac {x \left (x +2\right )}{2}}\right ) c_{1} -3 \]

Solution by Mathematica

Time used: 2.238 (sec). Leaf size: 220

DSolve[y''[x]-x*y'[x]-x*y[x]-3*x==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {1}{2} e^{-\frac {1}{2} (x+2)^2} \left (2 \sqrt {2} e^{\frac {x^2}{2}+x+2} (x+2) \int _1^x\left (\frac {3 e^{K[1]} K[1]}{\sqrt {2}}-\frac {3}{2} e^{-\frac {1}{2} K[1]^2-K[1]-2} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {(K[1]+2)^2}}{\sqrt {2}}\right ) K[1] \sqrt {(K[1]+2)^2}\right )dK[1]-\sqrt {2 \pi } \sqrt {(x+2)^2} \left (c_2 e^{\frac {x^2}{2}+x+2}+3 x+3\right ) \text {erfi}\left (\frac {\sqrt {(x+2)^2}}{\sqrt {2}}\right )+2 e^{\frac {x^2}{2}+x+2} \left (3 e^x (x+1)+\sqrt {2} c_1 (x+2)+c_2 e^{\frac {1}{2} (x+2)^2}\right )\right ) \]