1.23 problem 23

Internal problem ID [7412]

Book: Second order enumerated odes
Section: section 1
Problem number: 23.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

\[ \boxed {y^{\prime \prime }+{y^{\prime }}^{2}+y=0} \]

Solution by Maple

Time used: 0.0 (sec). Leaf size: 61

dsolve(diff(y(x),x$2)+diff(y(x),x)^2+y(x)=0,y(x), singsol=all)
 

\begin{align*} \int _{}^{y \left (x \right )}-\frac {2}{\sqrt {2+4 \,{\mathrm e}^{-2 \textit {\_a}} c_{1} -4 \textit {\_a}}}d \textit {\_a} -x -c_{2} = 0 \int _{}^{y \left (x \right )}\frac {2}{\sqrt {2+4 \,{\mathrm e}^{-2 \textit {\_a}} c_{1} -4 \textit {\_a}}}d \textit {\_a} -x -c_{2} = 0 \end{align*}

Solution by Mathematica

Time used: 0.786 (sec). Leaf size: 272

DSolve[y''[x]+(y'[x])^2+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[1]} c_1-2 K[1]+1}}dK[1]\&\right ][x+c_2] y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[2]} c_1-2 K[2]+1}}dK[2]\&\right ][x+c_2] y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[1]} (-c_1)-2 K[1]+1}}dK[1]\&\right ][x+c_2] y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[1]} c_1-2 K[1]+1}}dK[1]\&\right ][x+c_2] y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[2]} (-c_1)-2 K[2]+1}}dK[2]\&\right ][x+c_2] y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[2]} c_1-2 K[2]+1}}dK[2]\&\right ][x+c_2] \end{align*}