4.5 problem 26

Internal problem ID [10444]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 26.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_Riccati]

\[ \boxed {y^{\prime }+y^{2} {\mathrm e}^{\lambda x} \lambda -a \,x^{n} y \,{\mathrm e}^{\lambda x}=-x^{n} a} \]

Solution by Maple

Time used: 0.0 (sec). Leaf size: 135

dsolve(diff(y(x),x)=-lambda*exp(lambda*x)*y(x)^2+a*x^(n)*exp(lambda*x)*y(x)-a*x^n,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{1} {\mathrm e}^{-\lambda x} {\mathrm e}^{-\lambda x +a \left (\int {\mathrm e}^{\lambda x} x^{n}d x \right )}}{\lambda ^{2} \left (\left (\int \frac {{\mathrm e}^{-\lambda x +a \left (\int {\mathrm e}^{\lambda x} x^{n}d x \right )}}{\lambda }d x \right ) c_{1} +1\right )}+\frac {{\mathrm e}^{-\lambda x} \left (\left (\int \frac {{\mathrm e}^{-\lambda x +a \left (\int {\mathrm e}^{\lambda x} x^{n}d x \right )}}{\lambda }d x \right ) c_{1} \lambda ^{2}+\lambda ^{2}\right )}{\lambda ^{2} \left (\left (\int \frac {{\mathrm e}^{-\lambda x +a \left (\int {\mathrm e}^{\lambda x} x^{n}d x \right )}}{\lambda }d x \right ) c_{1} +1\right )} \]

Solution by Mathematica

Time used: 6.627 (sec). Leaf size: 185

DSolve[y'[x]==-\[Lambda]*Exp[\[Lambda]*x]*y[x]^2+a*x^(n)*Exp[\[Lambda]*x]*y[x]-a*x^n,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {e^{-2 \lambda x} \left (e^{\lambda x} \int _1^{e^{x \lambda }}\frac {\exp \left (\frac {a \Gamma (n+1,-\log (K[1])) (-\log (K[1]))^{-n} \left (\frac {\log (K[1])}{\lambda }\right )^n}{\lambda }\right )}{K[1]^2}dK[1]+\exp \left (\frac {a \left (-\log \left (e^{\lambda x}\right )\right )^{-n} \left (\frac {\log \left (e^{\lambda x}\right )}{\lambda }\right )^n \Gamma \left (n+1,-\log \left (e^{x \lambda }\right )\right )}{\lambda }\right )+c_1 e^{\lambda x}\right )}{\int _1^{e^{x \lambda }}\frac {\exp \left (\frac {a \Gamma (n+1,-\log (K[1])) (-\log (K[1]))^{-n} \left (\frac {\log (K[1])}{\lambda }\right )^n}{\lambda }\right )}{K[1]^2}dK[1]+c_1} y(x)\to e^{\lambda (-x)} \end{align*}