29.32 problem 141

Internal problem ID [10975]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^2 y''+f(x)y'+g(x)y=0\)
Problem number: 141.
ODE order: 2.
ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

\[ \boxed {x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y=0} \]

Solution by Maple

Time used: 0.078 (sec). Leaf size: 93

dsolve(x^2*diff(y(x),x$2)-2*x*(x^2-a)*diff(y(x),x)+(2*n*x^2+( (-1)^n-1)*a )*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = c_{1} x^{-a -\frac {1}{2}} {\mathrm e}^{\frac {x^{2}}{2}} \operatorname {WhittakerM}\left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {1-4 a \left (-1\right )^{n}+4 a^{2}}}{4}, x^{2}\right )+c_{2} x^{-a -\frac {1}{2}} {\mathrm e}^{\frac {x^{2}}{2}} \operatorname {WhittakerW}\left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {1-4 a \left (-1\right )^{n}+4 a^{2}}}{4}, x^{2}\right ) \]

Solution by Mathematica

Time used: 0.646 (sec). Leaf size: 231

DSolve[x^2*y''[x]-2*x*(x^2-a)*y'[x]+(2*n*x^2+( (-1)^n-1)*a )*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to i^{-a} (-1)^{\frac {1}{4} \left (1-\sqrt {4 a^2-4 a (-1)^n+1}\right )} x^{\frac {1}{2} \left (-\sqrt {4 a^2-4 a (-1)^n+1}-2 a+1\right )} \left (c_1 \operatorname {Hypergeometric1F1}\left (\frac {1}{4} \left (-2 a-2 n-\sqrt {4 a^2-4 (-1)^n a+1}+1\right ),1-\frac {1}{2} \sqrt {4 a^2-4 (-1)^n a+1},x^2\right )+c_2 i^{\sqrt {4 a^2-4 a (-1)^n+1}} x^{\sqrt {4 a^2-4 a (-1)^n+1}} \operatorname {Hypergeometric1F1}\left (\frac {1}{4} \left (-2 a-2 n+\sqrt {4 a^2-4 (-1)^n a+1}+1\right ),\frac {1}{2} \left (\sqrt {4 a^2-4 (-1)^n a+1}+2\right ),x^2\right )\right ) \]