# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 6 t \left (x-1\right )^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 2 t^{3} x-6 \] |
✓ |
✓ |
|
\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = t -x^{2} \] |
✓ |
✓ |
|
\[ {}7 t^{2} x^{\prime } = 3 x-2 t \] |
✓ |
✓ |
|
\[ {}x x^{\prime } = 1-t x \] |
✓ |
✓ |
|
\[ {}{x^{\prime }}^{2}+t x = \sqrt {t +1} \] |
✗ |
✗ |
|
\[ {}x^{\prime } = -\frac {2 x}{t}+t \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \] |
✓ |
✓ |
|
\[ {}t x^{\prime } = -x+t^{2} \] |
✓ |
✓ |
|
\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{t b} \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \] |
✓ |
✓ |
|
\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \] |
✓ |
✓ |
|
\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \] |
✗ |
✗ |
|
\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y = \sqrt {t +1} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 2 t x \] |
✓ |
✓ |
|
\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime } = 3 t \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \left (t +x\right )^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = a x+b \] |
✓ |
✓ |
|
\[ {}x^{\prime }+p \left (t \right ) x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = a x+b x^{3} \] |
✓ |
✓ |
|
\[ {}w^{\prime } = t w+t^{3} w^{3} \] |
✓ |
✓ |
|
\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \] |
✓ |
✓ |
|
\[ {}x+3 t x^{2} x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-t^{2} x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t \cot \left (x\right ) x^{\prime } = -2 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+9 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-12 x = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = \left (2+t \right ) \sin \left (\pi t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \] |
✗ |
✓ |
|
\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-x = \frac {1}{t} \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \] |
✓ |
✓ |
|
|
|||
|
|||