2.120 Problems 11901 to 12000

Table 2.239: Main lookup table

#

ODE

Mathematica result

Maple result

11901

\[ {}x \left (y+1\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

11902

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

11903

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

11904

\[ {}y^{\prime \prime }+y^{\prime } y = 1 \]

11905

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

11906

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

11907

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

11908

\[ {}\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

11909

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

11910

\[ {}y^{\prime } y = 1 \]

11911

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

11912

\[ {}5 y^{\prime }-x y = 0 \]

11913

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

11914

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

11915

\[ {}y^{\prime \prime \prime } = 1 \]

11916

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

11917

\[ {}y^{\prime \prime } = y+x^{2} \]

11918

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

11919

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

11920

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

11921

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

11922

\[ {}y y^{\prime \prime } = 1 \]

11923

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

11924

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

11925

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

11926

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

11927

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

11928

\[ {}\left (-3+x \right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

11929

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cot \left (x \right ) = 0 \]

11930

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

11931

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+\sin \left (x \right ) y = \sinh \left (x \right ) \]

11932

\[ {}\sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

11933

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

11934

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

11935

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

11936

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

11937

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

11938

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

11939

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

11940

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = -2 x +1 \]

11941

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

11942

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

11943

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

11944

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

11945

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

11946

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

11947

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

11948

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

11949

\[ {}x y^{\prime \prime }+\left (6 y^{2} x +1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

11950

\[ {}\frac {x y^{\prime \prime }}{y+1}+\frac {y^{\prime } y-x {y^{\prime }}^{2}+y^{\prime }}{\left (y+1\right )^{2}} = x \sin \left (x \right ) \]

11951

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = \sin \left (x \right ) y \]

11952

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

11953

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

11954

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

11955

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

11956

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

11957

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1+x}-\frac {\left (2+x \right ) y}{x^{2} \left (1+x \right )} = 0 \]

11958

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

11959

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (1+3 x \right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

11960

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right ) = 0 \]

11961

\[ {}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

11962

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

11963

\[ {}y^{\prime \prime }+9 y = 0 \]

11964

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

11965

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

11966

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

11967

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

11968

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]

11969

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

11970

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11971

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]

11972

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]

11973

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

11974

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

11975

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

11976

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]

11977

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

11978

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

11979

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

11980

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

11981

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

11982

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

11983

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

11984

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

11985

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

11986

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

11987

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

11988

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

11989

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]

11990

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]

11991

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]

11992

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]

11993

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]

11994

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]

11995

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

11996

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \]

11997

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

11998

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]

11999

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]

12000

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]