2.126 Problems 12501 to 12600

Table 2.251: Main lookup table

#

ODE

Mathematica result

Maple result

12501

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )] \]

12502

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+3 y_{2} \left (x \right )] \]

12503

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )+x -1, y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+2 y_{2} \left (x \right )-5 x -2] \]

12504

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {2 y_{1} \left (x \right )}{x}-\frac {y_{2} \left (x \right )}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}}, y_{2}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+1-6 x\right ] \]

12505

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}-2 x, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}+5 x\right ] \]

12506

\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+y_{2} \left (x \right )] \]

12507

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

12508

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

12509

\[ {}\left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (-2+x \right )^{2}}\right ] \]

12510

\[ {}\left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (-2+x \right )^{2}}\right ] \]

12519

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+5 \,{\mathrm e}^{x}, y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+4 y_{2} \left (x \right )-2 \,{\mathrm e}^{-x}] \]

12520

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )-2 y_{1} \left (x \right )+\sin \left (2 x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+y_{2} \left (x \right )-2 \cos \left (3 x \right )] \]

12521

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{3} \left (x \right )-y_{1} \left (x \right )] \]

12522

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 x y_{1} \left (x \right )-x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )] \]

12523

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )] \]

12524

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+4 x -2, y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )+3 x] \]

12525

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}\right ] \]

12526

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}-2 x, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}+5 x\right ] \]

12527

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

12528

\[ {}[y_{1}^{\prime }\left (x \right ) = 5 y_{1} \left (x \right )-5 y_{2} \left (x \right )-5 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+4 y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-5 y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

12529

\[ {}[y_{1}^{\prime }\left (x \right ) = 4 y_{1} \left (x \right )+6 y_{2} \left (x \right )+6 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+3 y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = -y_{1} \left (x \right )-4 y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

12530

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )-3 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+4 y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{3} \left (x \right )] \]

12531

\[ {}[y_{1}^{\prime }\left (x \right ) = -2 y_{1} \left (x \right )-y_{2} \left (x \right )+y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )-2 y_{2} \left (x \right )-y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{2} \left (x \right )-2 y_{3} \left (x \right )] \]

12532

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+2 y_{2} \left (x \right )+4 y_{3} \left (x \right )] \]

12533

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+2 y_{2} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{3} \left (x \right )-4 y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 4 y_{3} \left (x \right )+3 y_{4} \left (x \right )] \]

12534

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-5 y_{3} \left (x \right )] \]

12535

\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -2 y_{1} \left (x \right )+3 y_{2} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{3} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 2 y_{4} \left (x \right )] \]

12536

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )+y_{4} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = y_{3} \left (x \right )] \]

12537

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]

12538

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

12539

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

12540

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )] \]

12541

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

12542

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

12543

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )-y \left (t \right )+2, y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )-3] \]

12544

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )-6, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2] \]

12545

\[ {}y^{\prime } = \frac {y+1}{t +1} \]

12546

\[ {}y^{\prime } = t^{2} y^{2} \]

12547

\[ {}y^{\prime } = t^{4} y \]

12548

\[ {}y^{\prime } = 2 y+1 \]

12549

\[ {}y^{\prime } = 2-y \]

12550

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

12551

\[ {}x^{\prime } = 1+x^{2} \]

12552

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

12553

\[ {}y^{\prime } = \frac {t}{y} \]

12554

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

12555

\[ {}y^{\prime } = t y^{\frac {1}{3}} \]

12556

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

12557

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

12558

\[ {}y^{\prime } = y \left (1-y\right ) \]

12559

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

12560

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

12561

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

12562

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

12563

\[ {}y^{\prime } = y^{2}-4 \]

12564

\[ {}w^{\prime } = \frac {w}{t} \]

12565

\[ {}y^{\prime } = \sec \left (y\right ) \]

12566

\[ {}x^{\prime } = -x t \]

12567

\[ {}y^{\prime } = t y \]

12568

\[ {}y^{\prime } = -y^{2} \]

12569

\[ {}y^{\prime } = t^{2} y^{3} \]

12570

\[ {}y^{\prime } = -y^{2} \]

12571

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]

12572

\[ {}y^{\prime } = 2 y+1 \]

12573

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]

12574

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]

12575

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]

12576

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]

12577

\[ {}y^{\prime } = \frac {1}{2 y+3} \]

12578

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]

12579

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]

12580

\[ {}y^{\prime } = t^{2}+t \]

12581

\[ {}y^{\prime } = t^{2}+1 \]

12582

\[ {}y^{\prime } = 1-2 y \]

12583

\[ {}y^{\prime } = 4 y^{2} \]

12584

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

12585

\[ {}y^{\prime } = y+t +1 \]

12586

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]

12587

\[ {}y^{\prime } = 2 y-t \]

12588

\[ {}y^{\prime } = \left (y+\frac {1}{2}\right ) \left (y+t \right ) \]

12589

\[ {}y^{\prime } = \left (t +1\right ) y \]

12590

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]

12591

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]

12592

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]

12593

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]

12594

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]

12595

\[ {}y^{\prime } = y^{2}+y \]

12596

\[ {}y^{\prime } = y^{2}-y \]

12597

\[ {}y^{\prime } = y^{3}+y^{2} \]

12598

\[ {}y^{\prime } = -t^{2}+2 \]

12599

\[ {}y^{\prime } = t y+t y^{2} \]

12600

\[ {}y^{\prime } = t^{2}+t^{2} y \]