# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \left (1+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+6 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{\frac {5}{2}} {\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {t +1} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = f \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y t^{2}}{4} = f \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \] |
✓ |
✓ |
|
\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-t y = 0 \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+2\right ) y^{\prime \prime }-t y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y t^{3} = 0 \] |
✓ |
✓ |
|
\[ {}t \left (2-t \right ) y^{\prime \prime }-6 \left (t -1\right ) y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y t^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y t^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 t y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 y t^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 y t^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+t y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{t} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{-t} = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \] |
✓ |
✓ |
|
\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \] |
✓ |
✗ |
|
\[ {}\sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \] |
✓ |
✗ |
|
\[ {}t^{3} y^{\prime \prime }+\sin \left (t^{3}\right ) y^{\prime }+t y = 0 \] |
✓ |
✓ |
|
\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (t +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
|
|||
|
|||