# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime }+1-x = y \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (-y+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3-3 x +3 y+\left (-y+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x -\left (x^{2}+1\right ) y+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )-\left (\sin \left (x \right )-y\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (2 x \right )+\left (\sin \left (2 x \right )+y\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right )+x f \left (x \right ) y+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 a +3 b x +3 b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b x +c y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{n -1}+b \,x^{2 n}+c y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} a +b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right )+a y+b y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 1+a \left (-y+x \right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+a y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = x y \left (3+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-y^{2} x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (2+x^{2} y-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\left (-2 x +1\right ) y-\left (1-x \right ) y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{m}+b \,x^{n} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b y \cos \left (k x \right )\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right ) \left (2 \sec \left (x \right )^{2}-y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 \csc \left (x \right ) = \left (3-\cot \left (x \right )\right ) y+y^{2} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (a x +y\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a \,{\mathrm e}^{x}+y\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 a \left (y+2 x \right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \left (1-y^{2} x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y \left (1+a x y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = a \,x^{\frac {n}{-n +1}}+b y^{n} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right ) y+g \left (x \right ) y^{k} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {{| y|}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x^{3} = x \sqrt {x^{4}+4 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y \left (1-x \sqrt {y}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {a +b y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sqrt {a +b y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {X Y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = a +b \cos \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b \sin \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+\cos \left (x \right ) \sin \left (y\right )\right ) \tan \left (y\right ) \] |
✓ |
✗ |
|
\[ {}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \tan \left (y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +{\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \ln \left (x \right ) \ln \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{m -1} y^{-n +1} f \left (a \,x^{m}+b y^{n}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a f \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (a +b x +c y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 y^{\prime } = 2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \] |
✓ |
✗ |
|
\[ {}2 y^{\prime }+a x = \sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \] |
✓ |
✓ |
|
\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {a^{2}-x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x +y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x^{2}-y = 0 \] |
✓ |
✓ |
|
|
|||
|
|||