2.71 Problems 7001 to 7100

Table 2.141: Main lookup table

#

ODE

Mathematica result

Maple result

7001

\[ {}x \left (-2+x \right )^{2} y^{\prime \prime }-2 \left (-2+x \right ) y^{\prime }+2 y = 0 \]

7002

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y \left (1+x \right ) = 0 \]

7003

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }-y = 0 \]

7004

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }-2 y = 0 \]

7005

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

7006

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +7\right ) y^{\prime }+2 \left (5+x \right ) y = 0 \]

7007

\[ {}\left (x^{2}+1\right ) x^{2} y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y = 0 \]

7008

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-10 x y^{\prime }-18 y = 0 \]

7009

\[ {}2 x y^{\prime \prime }+\left (1+2 x \right ) y^{\prime }-3 y = 0 \]

7010

\[ {}y^{\prime \prime }+2 x y^{\prime }-8 y = 0 \]

7011

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }-\left (x^{2}+7\right ) y^{\prime }+4 x y = 0 \]

7012

\[ {}2 x^{2} y^{\prime \prime }-x \left (1+2 x \right ) y^{\prime }+\left (4 x +1\right ) y = 0 \]

7013

\[ {}4 x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x +3\right ) y = 0 \]

7014

\[ {}x^{2} y^{\prime \prime }-x \left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

7015

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

7016

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-3\right ) y^{\prime }+4 y = 0 \]

7017

\[ {}4 x^{2} y^{\prime \prime }-x^{2} y^{\prime }+y = 0 \]

7018

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

7019

\[ {}2 x^{2} y^{\prime \prime }-x \left (1+2 x \right ) y^{\prime }+\left (1+3 x \right ) y = 0 \]

7020

\[ {}4 x^{2} y^{\prime \prime }+3 x^{2} y^{\prime }+\left (1+3 x \right ) y = 0 \]

7021

\[ {}x y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

7022

\[ {}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (x +3\right ) y = 0 \]

7023

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+5 \left (-x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

7024

\[ {}x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (1+2 x \right ) y = 0 \]

7025

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+4\right ) y = 0 \]

7026

\[ {}x \left (-2 x +1\right ) y^{\prime \prime }-2 \left (2+x \right ) y^{\prime }+18 y = 0 \]

7027

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

7028

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y \left (1+x \right ) = 0 \]

7029

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

7030

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]

7031

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

7032

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

7033

\[ {}y^{\prime } = \frac {-y+2 x}{x +4 y} \]

7034

\[ {}y^{\prime }+\frac {2 y}{x} = 6 y^{2} x^{4} \]

7035

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

7036

\[ {}x y-1+x^{2} y^{\prime } = 0 \]

7037

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

7038

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

7039

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

7040

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

7041

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )] \]

7042

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

7043

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )+4 \,{\mathrm e}^{t}] \]

7044

\[ {}[x^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )+10, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )-2 \,{\mathrm e}^{t}] \]

7045

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

7046

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

7047

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

7048

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

7049

\[ {}y^{\prime } = y+1 \]

7050

\[ {}y^{\prime } = 1+x \]

7051

\[ {}y^{\prime } = x \]

7052

\[ {}y^{\prime } = y \]

7053

\[ {}y^{\prime } = 0 \]

7054

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

7055

\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \]

7056

\[ {}y^{\prime } = \frac {2 y}{x} \]

7057

\[ {}y^{\prime } = \frac {2 y}{x} \]

7058

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

7059

\[ {}y^{\prime } = \frac {1}{x} \]

7060

\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \]

7061

\[ {}\frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \]

7062

\[ {}y^{\prime } = \sqrt {\frac {y+1}{y^{2}}} \]

7063

\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

7064

\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (-2 x +1\right ) y^{4}}{3} \]

7065

\[ {}y^{\prime } = \sqrt {y}+x \]

7066

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

7067

\[ {}y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \]

7068

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

7069

\[ {}x y^{\prime } = 0 \]

7070

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

7071

\[ {}\frac {y^{\prime }}{x} = 0 \]

7072

\[ {}y^{\prime } = 0 \]

7073

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

7074

\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \]

7075

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

7076

\[ {}y^{\prime } = \frac {1}{1-y} \]

7077

\[ {}p^{\prime } = a p-b p^{2} \]

7078

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

7079

\[ {}x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

7080

\[ {}x y^{\prime }-2 y+b y^{2} = c \,x^{4} \]

7081

\[ {}x y^{\prime }-y+y^{2} = x^{\frac {2}{3}} \]

7082

\[ {}u^{\prime }+u^{2} = \frac {1}{x^{\frac {4}{5}}} \]

7083

\[ {}y^{\prime } y-y = x \]

7084

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

7085

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

7086

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

7087

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

7088

\[ {}y = x {y^{\prime }}^{2} \]

7089

\[ {}y^{\prime } y = 1-x {y^{\prime }}^{3} \]

7090

\[ {}f^{\prime } = \frac {1}{f} \]

7091

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

7092

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t = 0 \]

7093

\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +5 y = 0 \]

7094

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

7095

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

7096

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

7097

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

7098

\[ {}y^{\prime \prime } = 0 \]

7099

\[ {}y^{\prime \prime } = 1 \]

7100

\[ {}y^{\prime \prime } = f \left (t \right ) \]