# |
ODE |
Mathematica result |
Maple result |
\[ {}x \left (-2+x \right )^{2} y^{\prime \prime }-2 \left (-2+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y \left (1+x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +7\right ) y^{\prime }+2 \left (5+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) x^{2} y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-10 x y^{\prime }-18 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+\left (1+2 x \right ) y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }-\left (x^{2}+7\right ) y^{\prime }+4 x y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x \left (1+2 x \right ) y^{\prime }+\left (4 x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x +3\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-3\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }-x^{2} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x \left (1+2 x \right ) y^{\prime }+\left (1+3 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+3 x^{2} y^{\prime }+\left (1+3 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (x +3\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+5 \left (-x^{2}+1\right ) y^{\prime }-4 x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (1+2 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (-2 x +1\right ) y^{\prime \prime }-2 \left (2+x \right ) y^{\prime }+18 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y \left (1+x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \] |
✓ |
✓ |
|
\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-y+2 x}{x +4 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x} = 6 y^{2} x^{4} \] |
✓ |
✓ |
|
\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y-1+x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )+4 \,{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )+10, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )-2 \,{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\frac {y+1}{y^{2}}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (-2 x +1\right ) y^{4}}{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {y}+x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{x +y} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{1-y} \] |
✓ |
✓ |
|
\[ {}p^{\prime } = a p-b p^{2} \] |
✓ |
✓ |
|
\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y+b y^{2} = c \,x^{4} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y+y^{2} = x^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}u^{\prime }+u^{2} = \frac {1}{x^{\frac {4}{5}}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = 1-x {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}f^{\prime } = \frac {1}{f} \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 y^{\prime } t = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-3 y^{\prime } t +5 y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \] |
✗ |
✓ |
|
\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = f \left (t \right ) \] |
✓ |
✓ |
|
|
|||
|
|||