7.11.35 problem 36

Internal problem ID [356]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.5 (Nonhomogeneous equations and undetermined coefficients). Problems at page 161
Problem number : 36
Date solved : Monday, January 27, 2025 at 02:46:34 AM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }&=x^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1\\ y^{\prime \prime }\left (0\right )&=-1\\ y^{\prime \prime \prime }\left (0\right )&=-1 \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 31

dsolve([diff(y(x),x$4)-4*diff(y(x),x$2)=x^2,y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = -1, (D@@3)(y)(0) = -1],y(x), singsol=all)
 
\[ y = -\frac {x^{2}}{16}-\frac {x^{4}}{48}-\frac {3 \,{\mathrm e}^{-2 x}}{64}-\frac {11 \,{\mathrm e}^{2 x}}{64}+\frac {5 x}{4}+\frac {7}{32} \]

Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 44

DSolve[{D[y[x],{x,4}]-4*D[y[x],{x,2}]==x^2,{y[0]==0,Derivative[1][y][0] ==1,Derivative[2][y][0] ==-1,Derivative[3][y][0] ==-1}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{192} e^{-2 x} \left (e^{2 x} \left (-4 x^4-12 x^2+240 x+42\right )-33 e^{4 x}-9\right ) \]