57.1.17 problem 17

Internal problem ID [9001]
Book : First order enumerated odes
Section : section 1
Problem number : 17
Date solved : Wednesday, March 05, 2025 at 07:14:07 AM
CAS classification : [_quadrature]

\begin{align*} c y^{\prime }&=y \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 12
ode:=c*diff(y(x),x) = y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {x}{c}} c_{1} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 20
ode=c*D[y[x],x]==y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 e^{\frac {x}{c}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.114 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
c = symbols("c") 
y = Function("y") 
ode = Eq(c*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x}{c}} \]