57.1.56 problem 56

Internal problem ID [9040]
Book : First order enumerated odes
Section : section 1
Problem number : 56
Date solved : Wednesday, March 05, 2025 at 07:15:13 AM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x y^{3}} \end{align*}

Maple. Time used: 0.074 (sec). Leaf size: 55
ode:=diff(y(x),x)^2 = 1/x/y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {\sqrt {x y}\, y^{2}-\sqrt {x}\, c_{1} -5 x}{\sqrt {x}} &= 0 \\ \frac {\sqrt {x y}\, y^{2}-\sqrt {x}\, c_{1} +5 x}{\sqrt {x}} &= 0 \\ \end{align*}
Mathematica. Time used: 0.11 (sec). Leaf size: 53
ode=(D[y[x],x])^2==1/(x*y[x]^3); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \left (\frac {5}{2}\right )^{2/5} \left (-2 \sqrt {x}+c_1\right ){}^{2/5} \\ y(x)\to \left (\frac {5}{2}\right )^{2/5} \left (2 \sqrt {x}+c_1\right ){}^{2/5} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 - 1/(x*y(x)**3),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out