57.1.65 problem 65

Internal problem ID [9049]
Book : First order enumerated odes
Section : section 1
Problem number : 65
Date solved : Wednesday, March 05, 2025 at 07:18:25 AM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} y^{\prime }&=\left (a +b x +c y\right )^{6} \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 94
ode:=diff(y(x),x) = (a+b*x+c*y(x))^6; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left (\left (\int _{}^{\textit {\_Z}}\frac {1}{c^{7} \textit {\_a}^{6}+6 \textit {\_a}^{5} a \,c^{6}+15 \textit {\_a}^{4} a^{2} c^{5}+20 \textit {\_a}^{3} a^{3} c^{4}+15 \textit {\_a}^{2} a^{4} c^{3}+6 \textit {\_a} \,a^{5} c^{2}+a^{6} c +b}d \textit {\_a} \right ) c -x +c_{1} \right ) c -b x}{c} \]
Mathematica. Time used: 1.772 (sec). Leaf size: 274
ode=D[y[x],x]==(a+b*x+c*y[x])^6; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {-4 \sqrt [6]{b} \arctan \left (\frac {\sqrt [6]{c} (a+b x+c y(x))}{\sqrt [6]{b}}\right )+2 \sqrt [6]{b} \arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{c} (a+b x+c y(x))}{\sqrt [6]{b}}\right )-2 \sqrt [6]{b} \arctan \left (\frac {2 \sqrt [6]{c} (a+b x+c y(x))}{\sqrt [6]{b}}+\sqrt {3}\right )+\sqrt {3} \sqrt [6]{b} \log \left (\sqrt [3]{c} (a+b x+c y(x))^2-\sqrt {3} \sqrt [6]{b} \sqrt [6]{c} (a+b x+c y(x))+\sqrt [3]{b}\right )-\sqrt {3} \sqrt [6]{b} \log \left (\sqrt [3]{c} (a+b x+c y(x))^2+\sqrt {3} \sqrt [6]{b} \sqrt [6]{c} (a+b x+c y(x))+\sqrt [3]{b}\right )+12 a \sqrt [6]{c}+12 b \sqrt [6]{c} x+12 c^{7/6} y(x)}{12 b \sqrt [6]{c}}-\frac {c y(x)}{b}=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-(a + b*x + c*y(x))**6 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : argument of type Mul is not iterable