57.3.3 problem 3

Internal problem ID [9060]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 3
Date solved : Wednesday, March 05, 2025 at 07:18:50 AM
CAS classification : [_separable]

\begin{align*} t y^{\prime }+y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 1.078 (sec). Leaf size: 5
ode:=t*diff(y(t),t)+y(t) = 0; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = 0 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 6
ode=t*D[y[t],t]+y[t]==0; 
ic=y[0]==0; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to 0 \]
Sympy. Time used: 0.125 (sec). Leaf size: 3
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), t) + y(t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 0 \]