59.1.273 problem 276

Internal problem ID [9445]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 276
Date solved : Monday, January 27, 2025 at 06:02:54 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u&=0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 21

dsolve(diff(u(x),x$2)+2/x*diff(u(x),x)-a^2*u(x)=0,u(x), singsol=all)
 
\[ u = \frac {c_{1} \sinh \left (a x \right )+c_{2} \cosh \left (a x \right )}{x} \]

Solution by Mathematica

Time used: 0.030 (sec). Leaf size: 35

DSolve[D[u[x],{x,2}]+2/x*D[u[x],x]-a^2*u[x]==0,u[x],x,IncludeSingularSolutions -> True]
 
\[ u(x)\to \frac {2 a c_1 e^{-a x}+c_2 e^{a x}}{2 a x} \]