58.1.15 problem 15

Internal problem ID [9086]
Book : Second order enumerated odes
Section : section 1
Problem number : 15
Date solved : Wednesday, March 05, 2025 at 07:19:25 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=diff(diff(y(x),x),x)+diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -c_{1} {\mathrm e}^{-x}+x +c_{2} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 18
ode=D[y[x],{x,2}]+D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x-c_1 e^{-x}+c_2 \]
Sympy. Time used: 0.116 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- x} + x \]